YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Practical Means for Energy-Based Analyses of Disproportionate Collapse Potential

    Source: Journal of Performance of Constructed Facilities:;2006:;Volume ( 020 ):;issue: 004
    Author:
    Donald O. Dusenberry
    ,
    Ronald O. Hamburger
    DOI: 10.1061/(ASCE)0887-3828(2006)20:4(336)
    Publisher: American Society of Civil Engineers
    Abstract: For several decades, the engineering profession has considered techniques to analyze the potential that structures could experience disproportionate collapse and to design them for greater resistance to such collapse. First interest in such design followed the partial collapse in 1968 of the Ronan Point building in London, a high rise residential structure that experienced full height collapse of a portion of the building following a relatively small kitchen-related gas explosion. Interest in collapse phenomena continued to build following the attack on the Alfred P. Murrah building in 1995 and has been at an apex since the collapses of the twin towers at the World Trade Center and the nearby World Trade Center 7 building in 2001. Presently researchers and engineers are studying structural performance during extreme deformations, systems to resist disproportionate collapse, and methods to analyze collapse potential. The goal is to develop techniques to accurately and cost efficiently assess collapse potential and to enhance robustness at appropriate cost. Analysis methods in common use include sophisticated dynamic, nonlinear modeling of structural systems with high-fidelity structural analysis computer software, and simplified approaches that are intended to capture the essential behaviors during collapse scenarios. Unfortunately, the sophisticated approaches require software not normally owned by design engineers, substantial experience in the modeling of collapse phenomena, and time and cost implications that cannot be supported by the present design fees and, indeed, are not warranted for many situations. Simplified analysis methods in common use are generally empirically based. Hence, they do not capture the essential behaviors of collapse mechanisms, and are of uncertain applicability for all but structural systems for which they have been calibrated. This paper presents two energy-based methods that capture the essential physics of collapse phenomena, and have potential to be developed into simplified procedures for collapse potential assessment.
    • Download: (425.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Practical Means for Energy-Based Analyses of Disproportionate Collapse Potential

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/44459
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorDonald O. Dusenberry
    contributor authorRonald O. Hamburger
    date accessioned2017-05-08T21:15:17Z
    date available2017-05-08T21:15:17Z
    date copyrightNovember 2006
    date issued2006
    identifier other%28asce%290887-3828%282006%2920%3A4%28336%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/44459
    description abstractFor several decades, the engineering profession has considered techniques to analyze the potential that structures could experience disproportionate collapse and to design them for greater resistance to such collapse. First interest in such design followed the partial collapse in 1968 of the Ronan Point building in London, a high rise residential structure that experienced full height collapse of a portion of the building following a relatively small kitchen-related gas explosion. Interest in collapse phenomena continued to build following the attack on the Alfred P. Murrah building in 1995 and has been at an apex since the collapses of the twin towers at the World Trade Center and the nearby World Trade Center 7 building in 2001. Presently researchers and engineers are studying structural performance during extreme deformations, systems to resist disproportionate collapse, and methods to analyze collapse potential. The goal is to develop techniques to accurately and cost efficiently assess collapse potential and to enhance robustness at appropriate cost. Analysis methods in common use include sophisticated dynamic, nonlinear modeling of structural systems with high-fidelity structural analysis computer software, and simplified approaches that are intended to capture the essential behaviors during collapse scenarios. Unfortunately, the sophisticated approaches require software not normally owned by design engineers, substantial experience in the modeling of collapse phenomena, and time and cost implications that cannot be supported by the present design fees and, indeed, are not warranted for many situations. Simplified analysis methods in common use are generally empirically based. Hence, they do not capture the essential behaviors of collapse mechanisms, and are of uncertain applicability for all but structural systems for which they have been calibrated. This paper presents two energy-based methods that capture the essential physics of collapse phenomena, and have potential to be developed into simplified procedures for collapse potential assessment.
    publisherAmerican Society of Civil Engineers
    titlePractical Means for Energy-Based Analyses of Disproportionate Collapse Potential
    typeJournal Paper
    journal volume20
    journal issue4
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/(ASCE)0887-3828(2006)20:4(336)
    treeJournal of Performance of Constructed Facilities:;2006:;Volume ( 020 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian