YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Summary of SAC Case Study Building Analyses

    Source: Journal of Performance of Constructed Facilities:;1998:;Volume ( 012 ):;issue: 004
    Author:
    Gregory G. Deierlein
    DOI: 10.1061/(ASCE)0887-3828(1998)12:4(202)
    Publisher: American Society of Civil Engineers
    Abstract: Summarized in this paper are the major findings from analytical studies of nine steel moment frame buildings conducted under Phase 1 of the SAC Steel Project. The buildings range in height from two to seventeen stories and most of them experienced damage to welded beam-column connections during the Northridge earthquake of 1994. Elastic response spectrum, inelastic static pushover, and elastic and inelastic time-history analyses were conducted using ground motion data representative of the Northridge earthquake to establish the loading/deformation demands that the buildings experienced. The primary performance indices obtained from the analyses were demand-to-capacity ratios, interstory drift ratios, and inelastic hinge rotations. Maximum ratios of elastic member force demands to plastic strengths ranged between 1.0 and 2.0; maximum inelastic hinge rotations were 0.005–0.010 rad; and maximum interstory drift ratios were from 1 to 2%. These damage indices increased by 50%–150% under more severe ground motions recorded during the Northridge earthquake at the Sylmar site. Accuracy of the analyses is shown to be sensitive to a number of modeling parameters including finite joint size, joint panel behavior, composite beam action, strain hardening, second-order (
    • Download: (1.482Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Summary of SAC Case Study Building Analyses

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/44168
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorGregory G. Deierlein
    date accessioned2017-05-08T21:14:50Z
    date available2017-05-08T21:14:50Z
    date copyrightNovember 1998
    date issued1998
    identifier other%28asce%290887-3828%281998%2912%3A4%28202%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/44168
    description abstractSummarized in this paper are the major findings from analytical studies of nine steel moment frame buildings conducted under Phase 1 of the SAC Steel Project. The buildings range in height from two to seventeen stories and most of them experienced damage to welded beam-column connections during the Northridge earthquake of 1994. Elastic response spectrum, inelastic static pushover, and elastic and inelastic time-history analyses were conducted using ground motion data representative of the Northridge earthquake to establish the loading/deformation demands that the buildings experienced. The primary performance indices obtained from the analyses were demand-to-capacity ratios, interstory drift ratios, and inelastic hinge rotations. Maximum ratios of elastic member force demands to plastic strengths ranged between 1.0 and 2.0; maximum inelastic hinge rotations were 0.005–0.010 rad; and maximum interstory drift ratios were from 1 to 2%. These damage indices increased by 50%–150% under more severe ground motions recorded during the Northridge earthquake at the Sylmar site. Accuracy of the analyses is shown to be sensitive to a number of modeling parameters including finite joint size, joint panel behavior, composite beam action, strain hardening, second-order (
    publisherAmerican Society of Civil Engineers
    titleSummary of SAC Case Study Building Analyses
    typeJournal Paper
    journal volume12
    journal issue4
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/(ASCE)0887-3828(1998)12:4(202)
    treeJournal of Performance of Constructed Facilities:;1998:;Volume ( 012 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian