YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Cold Regions Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Cold Regions Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Thermal Analysis for Qing-Tibet Railway Embankments in Cold Regions

    Source: Journal of Cold Regions Engineering:;2003:;Volume ( 017 ):;issue: 004
    Author:
    Yuanming Lai
    ,
    Jianjun Li
    ,
    Fujun Niu
    ,
    Wenbing Yu
    DOI: 10.1061/(ASCE)0887-381X(2003)17:4(171)
    Publisher: American Society of Civil Engineers
    Abstract: Heat convection in ballast mass in railway embankments is a problem of heat convection in porous media. In order to calculate the temperature distribution of the Qing-Tibet railway embankment from the governing equations used to study forced convection for incompressible fluids porous media, detailed finite-element formulas for heat convection in porous media are derived using Galerkin’s method. The temperature distributions on central lines of the traditional railway embankment, the ripped-rock embankment, and the ripped-rock revetment embankment that were constructed on July 15, 2002 have been analyzed and compared on July 15, October 15 in the 24th year after construction, and January 15 in the 25th year after construction under the climatic and geological conditions on the Qing-Tibet Railway. The calculated results indicate that the traditional railway embankment will raise the permafrost temperature under the embankment base and make the permafrost embankment thermally unstable. The ripped-rock embankment and the ripped-rock revetment embankment will reduce the permafrost temperature under the embankment base in cold regions, therefore maintaining the thermal stability of permafrost. However, the ripped-rock embankment needs more rock mass while the ripped-rock revetment embankment need less rock mass, and its construction cost is lower than that of the former. Therefore, it is highly recommended that the ripped-rock revetment embankment be used for the Qing-Tibet railway embankment structure in high temperature permafrost regions so that the permafrost embankment can be protected as much as possible.
    • Download: (154.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Thermal Analysis for Qing-Tibet Railway Embankments in Cold Regions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/43750
    Collections
    • Journal of Cold Regions Engineering

    Show full item record

    contributor authorYuanming Lai
    contributor authorJianjun Li
    contributor authorFujun Niu
    contributor authorWenbing Yu
    date accessioned2017-05-08T21:14:07Z
    date available2017-05-08T21:14:07Z
    date copyrightDecember 2003
    date issued2003
    identifier other%28asce%290887-381x%282003%2917%3A4%28171%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/43750
    description abstractHeat convection in ballast mass in railway embankments is a problem of heat convection in porous media. In order to calculate the temperature distribution of the Qing-Tibet railway embankment from the governing equations used to study forced convection for incompressible fluids porous media, detailed finite-element formulas for heat convection in porous media are derived using Galerkin’s method. The temperature distributions on central lines of the traditional railway embankment, the ripped-rock embankment, and the ripped-rock revetment embankment that were constructed on July 15, 2002 have been analyzed and compared on July 15, October 15 in the 24th year after construction, and January 15 in the 25th year after construction under the climatic and geological conditions on the Qing-Tibet Railway. The calculated results indicate that the traditional railway embankment will raise the permafrost temperature under the embankment base and make the permafrost embankment thermally unstable. The ripped-rock embankment and the ripped-rock revetment embankment will reduce the permafrost temperature under the embankment base in cold regions, therefore maintaining the thermal stability of permafrost. However, the ripped-rock embankment needs more rock mass while the ripped-rock revetment embankment need less rock mass, and its construction cost is lower than that of the former. Therefore, it is highly recommended that the ripped-rock revetment embankment be used for the Qing-Tibet railway embankment structure in high temperature permafrost regions so that the permafrost embankment can be protected as much as possible.
    publisherAmerican Society of Civil Engineers
    titleNonlinear Thermal Analysis for Qing-Tibet Railway Embankments in Cold Regions
    typeJournal Paper
    journal volume17
    journal issue4
    journal titleJournal of Cold Regions Engineering
    identifier doi10.1061/(ASCE)0887-381X(2003)17:4(171)
    treeJournal of Cold Regions Engineering:;2003:;Volume ( 017 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian