YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improving System Identification Using Clustering

    Source: Journal of Computing in Civil Engineering:;2008:;Volume ( 022 ):;issue: 005
    Author:
    Sandro Saitta
    ,
    Prakash Kripakaran
    ,
    Benny Raphael
    ,
    Ian F. Smith
    DOI: 10.1061/(ASCE)0887-3801(2008)22:5(292)
    Publisher: American Society of Civil Engineers
    Abstract: System identification involves identification of a behavioral model that best explains the measured behavior of a structure. This research uses a strategy of generation and iterative filtering of multiple candidate models for system identification. The task of model filtering is supported by measurement-interpretation cycles. During each cycle, the location for subsequent measurement is chosen using the predictions of current candidate models. In this paper, data mining techniques are proposed to support such measurement-interpretation cycles. Candidate models, representing possible states of a structure, are clustered using a technique that combines principal component analysis and
    • Download: (535.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improving System Identification Using Clustering

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/43383
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorSandro Saitta
    contributor authorPrakash Kripakaran
    contributor authorBenny Raphael
    contributor authorIan F. Smith
    date accessioned2017-05-08T21:13:29Z
    date available2017-05-08T21:13:29Z
    date copyrightSeptember 2008
    date issued2008
    identifier other%28asce%290887-3801%282008%2922%3A5%28292%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/43383
    description abstractSystem identification involves identification of a behavioral model that best explains the measured behavior of a structure. This research uses a strategy of generation and iterative filtering of multiple candidate models for system identification. The task of model filtering is supported by measurement-interpretation cycles. During each cycle, the location for subsequent measurement is chosen using the predictions of current candidate models. In this paper, data mining techniques are proposed to support such measurement-interpretation cycles. Candidate models, representing possible states of a structure, are clustered using a technique that combines principal component analysis and
    publisherAmerican Society of Civil Engineers
    titleImproving System Identification Using Clustering
    typeJournal Paper
    journal volume22
    journal issue5
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)0887-3801(2008)22:5(292)
    treeJournal of Computing in Civil Engineering:;2008:;Volume ( 022 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian