YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiobjective Differential Evolution with Application to Reservoir System Optimization

    Source: Journal of Computing in Civil Engineering:;2007:;Volume ( 021 ):;issue: 002
    Author:
    M. Janga Reddy
    ,
    D. Nagesh Kumar
    DOI: 10.1061/(ASCE)0887-3801(2007)21:2(136)
    Publisher: American Society of Civil Engineers
    Abstract: Many water resources systems are characterized by multiple objectives. For multiobjective optimization, typically there can be no single optimal solution which can simultaneously satisfy all the goals, but rather a set of technologically efficient noninferior or Pareto optimal solutions exists. Generating those Pareto optimal solutions is a challenging task and often difficulties arise in using the conventional methods. In the optimization of reservoir systems, most of the times there is interdependence among one or more decision variables. Recently, it is emphasized that the evolutionary operators used in differential evolution algorithms are very much suitable for problems having interdependence among the decision variables. This paper utilizes this aspect and presents an efficient and effective approach for multiobjective optimization, namely multiobjective differential evolution (MODE) algorithm with an application to a case study in reservoir system optimization. The developed MODE algorithm is first tested on a few benchmark test problems and validated with standard performance measures by comparing them with the nondominated sorting genetic algorithm-II. On achieving satisfactory performance for test problems, it is applied to generate Pareto optimal solutions to a multiobjective reservoir operation problem. It is found that MODE provides many alternative Pareto optimal solutions with uniform coverage and convergence to true Pareto optimal fronts. The results obtained show that the proposed MODE can be a viable alternative for generating optimal trade-offs in multiobjective optimization of water resources systems.
    • Download: (255.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiobjective Differential Evolution with Application to Reservoir System Optimization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/43308
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorM. Janga Reddy
    contributor authorD. Nagesh Kumar
    date accessioned2017-05-08T21:13:20Z
    date available2017-05-08T21:13:20Z
    date copyrightMarch 2007
    date issued2007
    identifier other%28asce%290887-3801%282007%2921%3A2%28136%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/43308
    description abstractMany water resources systems are characterized by multiple objectives. For multiobjective optimization, typically there can be no single optimal solution which can simultaneously satisfy all the goals, but rather a set of technologically efficient noninferior or Pareto optimal solutions exists. Generating those Pareto optimal solutions is a challenging task and often difficulties arise in using the conventional methods. In the optimization of reservoir systems, most of the times there is interdependence among one or more decision variables. Recently, it is emphasized that the evolutionary operators used in differential evolution algorithms are very much suitable for problems having interdependence among the decision variables. This paper utilizes this aspect and presents an efficient and effective approach for multiobjective optimization, namely multiobjective differential evolution (MODE) algorithm with an application to a case study in reservoir system optimization. The developed MODE algorithm is first tested on a few benchmark test problems and validated with standard performance measures by comparing them with the nondominated sorting genetic algorithm-II. On achieving satisfactory performance for test problems, it is applied to generate Pareto optimal solutions to a multiobjective reservoir operation problem. It is found that MODE provides many alternative Pareto optimal solutions with uniform coverage and convergence to true Pareto optimal fronts. The results obtained show that the proposed MODE can be a viable alternative for generating optimal trade-offs in multiobjective optimization of water resources systems.
    publisherAmerican Society of Civil Engineers
    titleMultiobjective Differential Evolution with Application to Reservoir System Optimization
    typeJournal Paper
    journal volume21
    journal issue2
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)0887-3801(2007)21:2(136)
    treeJournal of Computing in Civil Engineering:;2007:;Volume ( 021 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian