Show simple item record

contributor authorYan, Hongbo
contributor authorHuang, Haitao
contributor authorWang, Jianxin
contributor authorMa, Qingzhen
date accessioned2025-08-20T09:37:29Z
date available2025-08-20T09:37:29Z
date copyright11/8/2024 12:00:00 AM
date issued2024
identifier issn1555-1415
identifier othercnd_020_01_011003.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4308579
description abstractIn view of the large errors in the integer-order prediction model of the current giant magnetostrictive actuator (GMA), existing studies have shown that the fractional-order theory can improve the classical integer-order error situation. To this end, the Riemann–Liouville (R–L) fractional-order calculus theory is applied to the damping part of the GMA system; based on the averaging method and the power series method, the analytical and numerical solutions of the system are obtained, respectively, the motion of the GMA system is obtained through simulation, the parameters affecting the main resonance response of the system are analyzed as well as the motion characteristics of the system under the parameters, and the bifurcation and chaotic characteristics of the system are analyzed qualitatively and quantitatively. It is shown that the fractional-order model can improve the prediction accuracy of the system, the fractional order has a significant effect on the motion of the system, and the interval of the periodical motion parameter is less than an integer when the order of the damping term is (0,1), and the system can be induced to shift to periodic motion by changing the parameters.
publisherThe American Society of Mechanical Engineers (ASME)
titleNonlinear Dynamic Analysis of Riemann–Liouville Fractional-Order Damping Giant Magnetostrictive Actuator
typeJournal Paper
journal volume20
journal issue1
journal titleJournal of Computational and Nonlinear Dynamics
identifier doi10.1115/1.4066884
journal fristpage11003-1
journal lastpage11003-9
page9
treeJournal of Computational and Nonlinear Dynamics:;2024:;volume( 020 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record