YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Prediction of Deflection Bowl Parameters by Gain Ratio Enabled Feature Selection and Machine-Learning Ensembles

    Source: Journal of Transportation Engineering, Part B: Pavements:;2025:;Volume ( 151 ):;issue: 002::page 04025022-1
    Author:
    Sachin Gowda
    ,
    Nandan Chikkakalabal Shivaiah
    ,
    Mulukunte Anantharamaiah Jayaram
    ,
    Aakash Gupta
    ,
    Jaya Raghuveer Shinganmakki
    DOI: 10.1061/JPEODX.PVENG-1630
    Publisher: American Society of Civil Engineers
    Abstract: The study emphasizes the potential of data-driven methodologies to enhance infrastructure management, promoting sustainability in pavement maintenance and decision-making. Precise pavement structural evaluation is essential for effective management, yet nondestructive techniques like the falling weight deflectometer (FWD) are challenging for extensive networks due to resource and expertise limitations. This study introduces a machine-learning (ML) approach employing linear regression (LR), decision trees (DT), random forest (RF), and gradient boosted trees (GBT) to predict deflection basin parameters (DBP), namely, surface curvature index (SCI), base curvature index (BCI), base damage index (BDI), area under pavement profile (AUPP), deflection ratio (DR), and shape factors (SF) SF1 and SF2. Our methodology leverages the gain ratio criterion for robust feature selection and integrates diverse input variables, including structural, functional, environmental, and subgrade properties. The algorithm, trained and validated in R-software with field trial data, is evaluated using root-mean square error (RMSE), mean square error (MSE), mean absolute error (MAE), and correlation coefficient. GBT consistently outperformed DT and RF, showing lower errors across all parameters: SCI (0.015), BCI (0.085), BDI (0.071), AUPP (0.013), DR (0), SF1 (0.047), and SF2 (0.309). This study underscores the potential of data-driven methods to improve infrastructure management and sustainability in pavement maintenance.
    • Download: (2.035Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Prediction of Deflection Bowl Parameters by Gain Ratio Enabled Feature Selection and Machine-Learning Ensembles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4307856
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorSachin Gowda
    contributor authorNandan Chikkakalabal Shivaiah
    contributor authorMulukunte Anantharamaiah Jayaram
    contributor authorAakash Gupta
    contributor authorJaya Raghuveer Shinganmakki
    date accessioned2025-08-17T23:03:58Z
    date available2025-08-17T23:03:58Z
    date copyright6/1/2025 12:00:00 AM
    date issued2025
    identifier otherJPEODX.PVENG-1630.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4307856
    description abstractThe study emphasizes the potential of data-driven methodologies to enhance infrastructure management, promoting sustainability in pavement maintenance and decision-making. Precise pavement structural evaluation is essential for effective management, yet nondestructive techniques like the falling weight deflectometer (FWD) are challenging for extensive networks due to resource and expertise limitations. This study introduces a machine-learning (ML) approach employing linear regression (LR), decision trees (DT), random forest (RF), and gradient boosted trees (GBT) to predict deflection basin parameters (DBP), namely, surface curvature index (SCI), base curvature index (BCI), base damage index (BDI), area under pavement profile (AUPP), deflection ratio (DR), and shape factors (SF) SF1 and SF2. Our methodology leverages the gain ratio criterion for robust feature selection and integrates diverse input variables, including structural, functional, environmental, and subgrade properties. The algorithm, trained and validated in R-software with field trial data, is evaluated using root-mean square error (RMSE), mean square error (MSE), mean absolute error (MAE), and correlation coefficient. GBT consistently outperformed DT and RF, showing lower errors across all parameters: SCI (0.015), BCI (0.085), BDI (0.071), AUPP (0.013), DR (0), SF1 (0.047), and SF2 (0.309). This study underscores the potential of data-driven methods to improve infrastructure management and sustainability in pavement maintenance.
    publisherAmerican Society of Civil Engineers
    titlePrediction of Deflection Bowl Parameters by Gain Ratio Enabled Feature Selection and Machine-Learning Ensembles
    typeJournal Article
    journal volume151
    journal issue2
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.PVENG-1630
    journal fristpage04025022-1
    journal lastpage04025022-11
    page11
    treeJournal of Transportation Engineering, Part B: Pavements:;2025:;Volume ( 151 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian