YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predicting Pavement Condition Index Using an ML Approach for a Municipal Street Network

    Source: Journal of Transportation Engineering, Part B: Pavements:;2025:;Volume ( 151 ):;issue: 002::page 04025025-1
    Author:
    Muhammad Amjad Afridi
    ,
    Sigurdur Erlingsson
    ,
    Leif Sjögren
    ,
    Cristofer Englund
    DOI: 10.1061/JPEODX.PVENG-1568
    Publisher: American Society of Civil Engineers
    Abstract: Machine learning (ML) models are increasingly getting attention in predicting pavement maintenance methods to improve decision-making. This study investigates the use of ML at the municipal level to predict the street pavement condition index (PCI) rating over a 4-year span. Several supervised learning models, namely linear regression (LR), random forest (RF), and neural network (NN), were applied to the visually assessed pavement condition data of Skellefteå municipality, Sweden. Pavement distress, pavement age, and traffic data were used in several combinations to evaluate and compare the performance of the models. The RF model was based on paired variables of pavement age and pavement distress data. The results were comparatively accurate with R2=0.59 and Spearman’s coefficient=0.74 for residential streets in the model testing stage. Similarly, for main, collector, and industrial (MCI) streets, the RF model, based on pavement age and traffic variables, performed best with R2=0.79 and Spearman’s coefficient=0.88 during the model testing stage. The importance of input variables varies with the level of the model’s sophistication and pavement performance goal; however, pavement age is the dominant variable. The prediction models can be useful in effectively managing street networks among municipalities, even those with scarce resources.
    • Download: (1.550Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predicting Pavement Condition Index Using an ML Approach for a Municipal Street Network

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4307850
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorMuhammad Amjad Afridi
    contributor authorSigurdur Erlingsson
    contributor authorLeif Sjögren
    contributor authorCristofer Englund
    date accessioned2025-08-17T23:03:46Z
    date available2025-08-17T23:03:46Z
    date copyright6/1/2025 12:00:00 AM
    date issued2025
    identifier otherJPEODX.PVENG-1568.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4307850
    description abstractMachine learning (ML) models are increasingly getting attention in predicting pavement maintenance methods to improve decision-making. This study investigates the use of ML at the municipal level to predict the street pavement condition index (PCI) rating over a 4-year span. Several supervised learning models, namely linear regression (LR), random forest (RF), and neural network (NN), were applied to the visually assessed pavement condition data of Skellefteå municipality, Sweden. Pavement distress, pavement age, and traffic data were used in several combinations to evaluate and compare the performance of the models. The RF model was based on paired variables of pavement age and pavement distress data. The results were comparatively accurate with R2=0.59 and Spearman’s coefficient=0.74 for residential streets in the model testing stage. Similarly, for main, collector, and industrial (MCI) streets, the RF model, based on pavement age and traffic variables, performed best with R2=0.79 and Spearman’s coefficient=0.88 during the model testing stage. The importance of input variables varies with the level of the model’s sophistication and pavement performance goal; however, pavement age is the dominant variable. The prediction models can be useful in effectively managing street networks among municipalities, even those with scarce resources.
    publisherAmerican Society of Civil Engineers
    titlePredicting Pavement Condition Index Using an ML Approach for a Municipal Street Network
    typeJournal Article
    journal volume151
    journal issue2
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.PVENG-1568
    journal fristpage04025025-1
    journal lastpage04025025-13
    page13
    treeJournal of Transportation Engineering, Part B: Pavements:;2025:;Volume ( 151 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian