YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Air Demand and Flow Patterns of Low-Level Outlets: Accounting for Wall Roughness

    Source: Journal of Hydraulic Engineering:;2025:;Volume ( 151 ):;issue: 003::page 04025005-1
    Author:
    Simone Pagliara
    ,
    Stefan Felder
    ,
    Benjamin Hohermuth
    ,
    Robert Michael Boes
    DOI: 10.1061/JHEND8.HYENG-14192
    Publisher: American Society of Civil Engineers
    Abstract: Low-level outlets (LLOs) are key safety elements of high-head dams, typically consisting of a pressurized inflow controlled by a vertical sluice gate that discharges into a free-surface flow tunnel. The transition from pressurized to free-surface flow generates a high-velocity water jet with considerable air entrainment and transport along the tunnel, resulting in subatmospheric pressures downstream of the gate. These conditions potentially aggravate serious safety issues such as cavitation, gate vibration, and, in combination with sediment transport, hydroabrasion. Sufficient air supply can mitigate these problems. Several empirical equations have been developed to predict the air demand of LLOs, incorporating the effects of flow patterns, air vent loss coefficient, and tunnel geometry. However, reported model and prototype air demand data scatter over one order of magnitude, with tunnel roughness identified as a potential reason for these differences. To date, the influence of wall roughness on the performance of LLOs has not been systematically investigated. In this study, physical model tests were conducted with varying wall roughness, representing finished concrete, abraded concrete, and unlined rock at prototype scale. The results showed a significant increase in the air-water mixture flow depth with increasing wall roughness, where excessive filling of the tunnel may trigger foamy flow, flow choking, and the formation of hydraulic jumps, resulting in severe degradation of LLO performance. Increased wall roughness also led to a higher air demand, suggesting a predominant effect of the invert roughness over the wall and soffit roughness. A novel empirical equation was derived for air demand, incorporating the effects of tunnel roughness. The equation showed good agreement with previous laboratory and prototype data, indicating that other design parameters were not affected by the tunnel roughness. Finally, design recommendations were updated to account for roughness effects in LLO design, thereby contributing toward a safer design of these structures.
    • Download: (3.297Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Air Demand and Flow Patterns of Low-Level Outlets: Accounting for Wall Roughness

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4307456
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorSimone Pagliara
    contributor authorStefan Felder
    contributor authorBenjamin Hohermuth
    contributor authorRobert Michael Boes
    date accessioned2025-08-17T22:47:28Z
    date available2025-08-17T22:47:28Z
    date copyright5/1/2025 12:00:00 AM
    date issued2025
    identifier otherJHEND8.HYENG-14192.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4307456
    description abstractLow-level outlets (LLOs) are key safety elements of high-head dams, typically consisting of a pressurized inflow controlled by a vertical sluice gate that discharges into a free-surface flow tunnel. The transition from pressurized to free-surface flow generates a high-velocity water jet with considerable air entrainment and transport along the tunnel, resulting in subatmospheric pressures downstream of the gate. These conditions potentially aggravate serious safety issues such as cavitation, gate vibration, and, in combination with sediment transport, hydroabrasion. Sufficient air supply can mitigate these problems. Several empirical equations have been developed to predict the air demand of LLOs, incorporating the effects of flow patterns, air vent loss coefficient, and tunnel geometry. However, reported model and prototype air demand data scatter over one order of magnitude, with tunnel roughness identified as a potential reason for these differences. To date, the influence of wall roughness on the performance of LLOs has not been systematically investigated. In this study, physical model tests were conducted with varying wall roughness, representing finished concrete, abraded concrete, and unlined rock at prototype scale. The results showed a significant increase in the air-water mixture flow depth with increasing wall roughness, where excessive filling of the tunnel may trigger foamy flow, flow choking, and the formation of hydraulic jumps, resulting in severe degradation of LLO performance. Increased wall roughness also led to a higher air demand, suggesting a predominant effect of the invert roughness over the wall and soffit roughness. A novel empirical equation was derived for air demand, incorporating the effects of tunnel roughness. The equation showed good agreement with previous laboratory and prototype data, indicating that other design parameters were not affected by the tunnel roughness. Finally, design recommendations were updated to account for roughness effects in LLO design, thereby contributing toward a safer design of these structures.
    publisherAmerican Society of Civil Engineers
    titleAir Demand and Flow Patterns of Low-Level Outlets: Accounting for Wall Roughness
    typeJournal Article
    journal volume151
    journal issue3
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/JHEND8.HYENG-14192
    journal fristpage04025005-1
    journal lastpage04025005-15
    page15
    treeJournal of Hydraulic Engineering:;2025:;Volume ( 151 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian