YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Lignin on the Dynamic Characteristics and Mechanisms of Silty Soil

    Source: International Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 006::page 04025099-1
    Author:
    Duan Yang
    ,
    Xinshan Zhuang
    ,
    Xiaofei Li
    ,
    Jun He
    DOI: 10.1061/IJGNAI.GMENG-10988
    Publisher: American Society of Civil Engineers
    Abstract: To address the issues of significant deformation and susceptibility to liquefaction of silt under traffic loads, while also promoting the reuse of waste lignin, lignin was used to reinforce silt. A series of laboratory experiments were conducted to investigate the effects of different lignin contents and curing periods on the compressive strength of the soil. Additionally, the study analyzed the cumulative plastic deformation and excess pore-water pressure under various conditions. Using scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy, the microstructural characteristics of silt before and after lignin modification were qualitatively and quantitatively described. The experimental results indicate that lignin can significantly enhance the compressive strength of soil, and the optimal effect was observed at an 8% lignin content. At a curing age of 28 days, the strength of the treated soil was 2.65 times that of the untreated soil. The treated soil exhibited greater shear strength than the untreated soil. The addition of lignin significantly reduced the cumulative plastic deformation and excess pore-water pressure of the soil, mitigating various risks in the subgrade, such as insufficient bearing capacity and liquefaction. Lignin binds soil particles and undergoes a cementation reaction without the formation of new minerals. The cementitious material fills the voids in the soil, gradually transforming large pores into medium and small pores. Combined with the particle pores and cracks analysis system, quantitative analysis indicates that as the lignin content increased, the soil porosity gradually decreased, reaching a maximum soil compactness at an 8% admixture. The research findings can provide theoretical references for the engineering application of lignin.
    • Download: (2.204Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Lignin on the Dynamic Characteristics and Mechanisms of Silty Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306890
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorDuan Yang
    contributor authorXinshan Zhuang
    contributor authorXiaofei Li
    contributor authorJun He
    date accessioned2025-08-17T22:24:16Z
    date available2025-08-17T22:24:16Z
    date copyright6/1/2025 12:00:00 AM
    date issued2025
    identifier otherIJGNAI.GMENG-10988.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306890
    description abstractTo address the issues of significant deformation and susceptibility to liquefaction of silt under traffic loads, while also promoting the reuse of waste lignin, lignin was used to reinforce silt. A series of laboratory experiments were conducted to investigate the effects of different lignin contents and curing periods on the compressive strength of the soil. Additionally, the study analyzed the cumulative plastic deformation and excess pore-water pressure under various conditions. Using scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy, the microstructural characteristics of silt before and after lignin modification were qualitatively and quantitatively described. The experimental results indicate that lignin can significantly enhance the compressive strength of soil, and the optimal effect was observed at an 8% lignin content. At a curing age of 28 days, the strength of the treated soil was 2.65 times that of the untreated soil. The treated soil exhibited greater shear strength than the untreated soil. The addition of lignin significantly reduced the cumulative plastic deformation and excess pore-water pressure of the soil, mitigating various risks in the subgrade, such as insufficient bearing capacity and liquefaction. Lignin binds soil particles and undergoes a cementation reaction without the formation of new minerals. The cementitious material fills the voids in the soil, gradually transforming large pores into medium and small pores. Combined with the particle pores and cracks analysis system, quantitative analysis indicates that as the lignin content increased, the soil porosity gradually decreased, reaching a maximum soil compactness at an 8% admixture. The research findings can provide theoretical references for the engineering application of lignin.
    publisherAmerican Society of Civil Engineers
    titleEffects of Lignin on the Dynamic Characteristics and Mechanisms of Silty Soil
    typeJournal Article
    journal volume25
    journal issue6
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-10988
    journal fristpage04025099-1
    journal lastpage04025099-13
    page13
    treeInternational Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian