YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    STA-CDTM: A Cross-Domain Trajectory-Matching Framework of Roadside Sensors Based on Spatiotemporal Propagation Characteristics

    Source: Journal of Transportation Engineering, Part A: Systems:;2025:;Volume ( 151 ):;issue: 007::page 04025050-1
    Author:
    Zhidan Yang
    ,
    Zimu Zeng
    ,
    Yonglin Zhan
    ,
    Cong Zhao
    ,
    Yuxiong Ji
    ,
    Yuchuan Du
    DOI: 10.1061/JTEPBS.TEENG-8679
    Publisher: American Society of Civil Engineers
    Abstract: Matching trajectory segments from different roadside sensors to form continuous, regional-level trajectories has become an emerging topic for cooperative vehicle infrastructure systems (CVIS). The current appearance-based matching method faces both subtle interinstance discrepancies and significant intrainstance differences in vehicle images. This paper proposes a spatiotemporal and appearance-based cross-domain trajectory-matching (STA-CDTM) framework for distributed cameras in the urban road network, which comprises two modules: spatiotemporal feature calculation and fusion feature matching. The spatiotemporal feature calculation module employs a dynamic graph-based spatiotemporal propagation model (DG-STPM) to model the traffic propagation characteristics within the road network and extract the spatiotemporal correlation features of the vehicle trajectory. The fusion feature matching module utilizes a spatiotemporal mask (STM) to determine the candidate nodes and trajectories through the spatiotemporal constraints and employs the enhanced similarity metric (ESM) for trajectory matching by fusing the spatiotemporal correlation and appearance features. On the public pNEUMA data set, the proposed DG-STPM demonstrated reductions in mean absolute error (MAE) by 15.4%, 10.8%, and 5.1% in free flow, congestion, and jam scenarios, respectively, effectively capturing traffic propagation characteristics. Additionally, the framework achieved the highest identification F-score (IDF1) and identification precision (IDP) scores of 0.8251, and 0.8567 in trajectory matching, tested on a field-collected roadside camera data set from Jiading, Shanghai, China, indicating superior performance across various traffic conditions.
    • Download: (2.613Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      STA-CDTM: A Cross-Domain Trajectory-Matching Framework of Roadside Sensors Based on Spatiotemporal Propagation Characteristics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306847
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorZhidan Yang
    contributor authorZimu Zeng
    contributor authorYonglin Zhan
    contributor authorCong Zhao
    contributor authorYuxiong Ji
    contributor authorYuchuan Du
    date accessioned2025-08-17T22:22:34Z
    date available2025-08-17T22:22:34Z
    date copyright7/1/2025 12:00:00 AM
    date issued2025
    identifier otherJTEPBS.TEENG-8679.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306847
    description abstractMatching trajectory segments from different roadside sensors to form continuous, regional-level trajectories has become an emerging topic for cooperative vehicle infrastructure systems (CVIS). The current appearance-based matching method faces both subtle interinstance discrepancies and significant intrainstance differences in vehicle images. This paper proposes a spatiotemporal and appearance-based cross-domain trajectory-matching (STA-CDTM) framework for distributed cameras in the urban road network, which comprises two modules: spatiotemporal feature calculation and fusion feature matching. The spatiotemporal feature calculation module employs a dynamic graph-based spatiotemporal propagation model (DG-STPM) to model the traffic propagation characteristics within the road network and extract the spatiotemporal correlation features of the vehicle trajectory. The fusion feature matching module utilizes a spatiotemporal mask (STM) to determine the candidate nodes and trajectories through the spatiotemporal constraints and employs the enhanced similarity metric (ESM) for trajectory matching by fusing the spatiotemporal correlation and appearance features. On the public pNEUMA data set, the proposed DG-STPM demonstrated reductions in mean absolute error (MAE) by 15.4%, 10.8%, and 5.1% in free flow, congestion, and jam scenarios, respectively, effectively capturing traffic propagation characteristics. Additionally, the framework achieved the highest identification F-score (IDF1) and identification precision (IDP) scores of 0.8251, and 0.8567 in trajectory matching, tested on a field-collected roadside camera data set from Jiading, Shanghai, China, indicating superior performance across various traffic conditions.
    publisherAmerican Society of Civil Engineers
    titleSTA-CDTM: A Cross-Domain Trajectory-Matching Framework of Roadside Sensors Based on Spatiotemporal Propagation Characteristics
    typeJournal Article
    journal volume151
    journal issue7
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.TEENG-8679
    journal fristpage04025050-1
    journal lastpage04025050-12
    page12
    treeJournal of Transportation Engineering, Part A: Systems:;2025:;Volume ( 151 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian