YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonstationary Turbulent Wind Speed Models and Their Effects on Wind-Induced Responses of Tall Buildings

    Source: Journal of Structural Engineering:;2025:;Volume ( 151 ):;issue: 003::page 04025003-1
    Author:
    Kang Cai
    ,
    Mingfeng Huang
    ,
    You Dong
    ,
    Sunce Liao
    ,
    Yi-Qing Ni
    ,
    P. W. Chan
    DOI: 10.1061/JSENDH.STENG-14070
    Publisher: American Society of Civil Engineers
    Abstract: There exist so many approaches to extract the time-varying mean (TVM) of nonstationary wind speeds under the nonstationary wind speed model, such as the wavelet transform and empirical model decomposition. These approaches yield different fluctuating wind components, resulting in significant differences in related wind parameters of fluctuating wind speeds (e.g., turbulence intensity, turbulence integral length scale, and wind spectrum). Meanwhile, compared to the stationary wind speed model, the nonstationary wind speed model would lead to different predictions of wind loads and wind-induced responses of a tall building even under the same wind field. This paper first derives the theoretical relationships of statistical parameters between stationary and nonstationary wind speed models, including turbulence intensity, turbulence integral length scale, and turbulence wind spectrum across different models. Wind speed data recorded during Typhoon Mangkhut from September 15 to September 18, 2018, are analyzed to validate the derived relationships. The analysis results confirm that the turbulence intensities and turbulence integral length scales of fluctuating wind speed components under the nonstationary wind speed model are generally smaller than those under the stationary wind speed model. The response analyses of an actual tall building were conducted under Typhoon Mangkhut utilizing various wind speed models. Significant disparities in structural responses are observed between the simulated stationary and nonstationary wind conditions. This result indicates that for typhoon wind fields with noticeable nonstationary properties, the conventional stationary wind speed models may not adequately capture the full dynamic wind effects on tall buildings. Besides, improper extraction of the TVM and subsequent simulation of the nonstationary wind velocity field can lead to substantial discrepancies between the calculated structural responses and the true values. It is thus necessary to establish a nonstationary wind speed model with a proper TVM for the wind-resistant design of tall buildings under typhoons or other nonsynoptic wind environments.
    • Download: (6.289Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonstationary Turbulent Wind Speed Models and Their Effects on Wind-Induced Responses of Tall Buildings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306760
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorKang Cai
    contributor authorMingfeng Huang
    contributor authorYou Dong
    contributor authorSunce Liao
    contributor authorYi-Qing Ni
    contributor authorP. W. Chan
    date accessioned2025-08-17T22:19:11Z
    date available2025-08-17T22:19:11Z
    date copyright3/1/2025 12:00:00 AM
    date issued2025
    identifier otherJSENDH.STENG-14070.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306760
    description abstractThere exist so many approaches to extract the time-varying mean (TVM) of nonstationary wind speeds under the nonstationary wind speed model, such as the wavelet transform and empirical model decomposition. These approaches yield different fluctuating wind components, resulting in significant differences in related wind parameters of fluctuating wind speeds (e.g., turbulence intensity, turbulence integral length scale, and wind spectrum). Meanwhile, compared to the stationary wind speed model, the nonstationary wind speed model would lead to different predictions of wind loads and wind-induced responses of a tall building even under the same wind field. This paper first derives the theoretical relationships of statistical parameters between stationary and nonstationary wind speed models, including turbulence intensity, turbulence integral length scale, and turbulence wind spectrum across different models. Wind speed data recorded during Typhoon Mangkhut from September 15 to September 18, 2018, are analyzed to validate the derived relationships. The analysis results confirm that the turbulence intensities and turbulence integral length scales of fluctuating wind speed components under the nonstationary wind speed model are generally smaller than those under the stationary wind speed model. The response analyses of an actual tall building were conducted under Typhoon Mangkhut utilizing various wind speed models. Significant disparities in structural responses are observed between the simulated stationary and nonstationary wind conditions. This result indicates that for typhoon wind fields with noticeable nonstationary properties, the conventional stationary wind speed models may not adequately capture the full dynamic wind effects on tall buildings. Besides, improper extraction of the TVM and subsequent simulation of the nonstationary wind velocity field can lead to substantial discrepancies between the calculated structural responses and the true values. It is thus necessary to establish a nonstationary wind speed model with a proper TVM for the wind-resistant design of tall buildings under typhoons or other nonsynoptic wind environments.
    publisherAmerican Society of Civil Engineers
    titleNonstationary Turbulent Wind Speed Models and Their Effects on Wind-Induced Responses of Tall Buildings
    typeJournal Article
    journal volume151
    journal issue3
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-14070
    journal fristpage04025003-1
    journal lastpage04025003-17
    page17
    treeJournal of Structural Engineering:;2025:;Volume ( 151 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian