Show simple item record

contributor authorWu, Shilei
contributor authorLing, Mingxiang
contributor authorJiang, Zhujin
date accessioned2025-04-21T10:32:36Z
date available2025-04-21T10:32:36Z
date copyright2/11/2025 12:00:00 AM
date issued2025
identifier issn1942-4302
identifier otherjmr-24-1507.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306410
description abstractKinetostatic and dynamic analyses are of significance in designing compliant mechanisms. The design challenge of complex configurations with irregular building blocks, however, not only leads to difficult modeling but would also results in large errors and even wrong results. In this article, a systematic procedure of the transfer matrix method is developed for kinetostatic and dynamic analyses of compliant mechanisms with irregular serial-parallel building blocks. To this end, a generalized transfer matrix is established by shifting end nodes of all adjacent flexure members to being coincided. Uniform transfer matrix formulations of purely parallel and parallel-clamped subchains are derived as well. The systematic procedure enables a concise analysis process without the requirement of cumbersome mathematical derivations to deal with irregular connection of flexure building blocks, thus facilitating a parametric modeling that is not only robust but also computationally efficient. A practical design is implemented to show the considerable reduction of modeling complexity and enhancement of prediction accuracy with the presented approach.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Systematic Procedure of Transfer Matrix Method to Analyze Compliant Mechanisms With Irregularly Connected Building Blocks
typeJournal Paper
journal volume17
journal issue7
journal titleJournal of Mechanisms and Robotics
identifier doi10.1115/1.4067721
journal fristpage74501-1
journal lastpage74501-11
page11
treeJournal of Mechanisms and Robotics:;2025:;volume( 017 ):;issue: 007
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record