YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimizing the Nonconventional Water Supply across the Water-Energy-Food Nexus for Arid Regions Using a Life Cycle Assessment

    Source: Journal of Water Resources Planning and Management:;2024:;Volume ( 150 ):;issue: 012::page 04024056-1
    Author:
    Esra Aleisa
    ,
    Sara Al-Haddad
    DOI: 10.1061/JWRMD5.WRENG-6103
    Publisher: American Society of Civil Engineers
    Abstract: The escalating global water scarcity crisis has propelled an increasing dependence on nonconventional water sources, particularly desalination and treated wastewater. Assessments of the United Nations’ water-related sustainable development goals on a global scale have brought to light a paradoxical trend of localized water decisions that have exacerbated long-term water scarcity issues. This study employs a water-energy-food (WEF) nexus framework to evaluate nonconventional water resources, fostering an understanding of interconnected water dynamics and promoting enhanced resource utilization and sustainability. Utilizing a multicriteria mathematical model grounded in life cycle assessment (LCA), this study optimizes water usage across the WEF nexus. The augmented simplex lattice mixture (ASLM) design is employed to identify WEF optimal frontiers under varying priorities within the hyperarid region of Kuwait. The findings underscore the significant influence of hidden virtual water on overall outcomes. Specifically, for wastewater permeate treated by reverse osmosis (WWROP), each cubic meter of permeate utilizes 1.78  m3, with 90% consumed virtually for chemical production. Within the water-for-food nexus, the results reveal that tertiary-level treated wastewater (WWTTE) contains 67% of the required phosphate for fodder cultivation, leading to an additional 24.89  t/ha of fodder compared with WWROP and desalinated water. An evaluation of the energy-for-water nexus indicates that WWTTE and WWROP exhibit the lowest cumulative energy demand. Consequently, these results advocate for the utilization of WWTTE over WWROP and desalinated water to enhance the overall WEF nexus. Research suggests that a misrepresentation of the local context in WEF solutions may contribute to the slow adoption of WEF concepts in governance and political reform. This study addresses the pressing issue of water scarcity through the application of LCA. This analysis involves the evaluation of commercially available nonconventional water technologies concerning demand requirements across municipal, agricultural, and industrial sectors. A mathematical model is employed to assess and optimize the demand and supply assignment problem considering various impacts associated with WEF frontier priorities. The primary focus of this research is on the critical water scarcity challenges faced by hyperarid regions. Specifically, this study delves into the interrelationships among water, energy, and food consumption and their collective impact on these precious resources. Employing LCA, sensitivity analysis, and optimization models, this research scrutinizes the existing state of water, energy, and food in Kuwait. The aim is to provide specific recommendations that contribute to enhancing the equilibrium among these three vital resources.
    • Download: (1.839Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimizing the Nonconventional Water Supply across the Water-Energy-Food Nexus for Arid Regions Using a Life Cycle Assessment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305063
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorEsra Aleisa
    contributor authorSara Al-Haddad
    date accessioned2025-04-20T10:36:47Z
    date available2025-04-20T10:36:47Z
    date copyright9/24/2024 12:00:00 AM
    date issued2024
    identifier otherJWRMD5.WRENG-6103.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305063
    description abstractThe escalating global water scarcity crisis has propelled an increasing dependence on nonconventional water sources, particularly desalination and treated wastewater. Assessments of the United Nations’ water-related sustainable development goals on a global scale have brought to light a paradoxical trend of localized water decisions that have exacerbated long-term water scarcity issues. This study employs a water-energy-food (WEF) nexus framework to evaluate nonconventional water resources, fostering an understanding of interconnected water dynamics and promoting enhanced resource utilization and sustainability. Utilizing a multicriteria mathematical model grounded in life cycle assessment (LCA), this study optimizes water usage across the WEF nexus. The augmented simplex lattice mixture (ASLM) design is employed to identify WEF optimal frontiers under varying priorities within the hyperarid region of Kuwait. The findings underscore the significant influence of hidden virtual water on overall outcomes. Specifically, for wastewater permeate treated by reverse osmosis (WWROP), each cubic meter of permeate utilizes 1.78  m3, with 90% consumed virtually for chemical production. Within the water-for-food nexus, the results reveal that tertiary-level treated wastewater (WWTTE) contains 67% of the required phosphate for fodder cultivation, leading to an additional 24.89  t/ha of fodder compared with WWROP and desalinated water. An evaluation of the energy-for-water nexus indicates that WWTTE and WWROP exhibit the lowest cumulative energy demand. Consequently, these results advocate for the utilization of WWTTE over WWROP and desalinated water to enhance the overall WEF nexus. Research suggests that a misrepresentation of the local context in WEF solutions may contribute to the slow adoption of WEF concepts in governance and political reform. This study addresses the pressing issue of water scarcity through the application of LCA. This analysis involves the evaluation of commercially available nonconventional water technologies concerning demand requirements across municipal, agricultural, and industrial sectors. A mathematical model is employed to assess and optimize the demand and supply assignment problem considering various impacts associated with WEF frontier priorities. The primary focus of this research is on the critical water scarcity challenges faced by hyperarid regions. Specifically, this study delves into the interrelationships among water, energy, and food consumption and their collective impact on these precious resources. Employing LCA, sensitivity analysis, and optimization models, this research scrutinizes the existing state of water, energy, and food in Kuwait. The aim is to provide specific recommendations that contribute to enhancing the equilibrium among these three vital resources.
    publisherAmerican Society of Civil Engineers
    titleOptimizing the Nonconventional Water Supply across the Water-Energy-Food Nexus for Arid Regions Using a Life Cycle Assessment
    typeJournal Article
    journal volume150
    journal issue12
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/JWRMD5.WRENG-6103
    journal fristpage04024056-1
    journal lastpage04024056-18
    page18
    treeJournal of Water Resources Planning and Management:;2024:;Volume ( 150 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian