YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Dilatancy Seepage Model of Single Rock Fracture with Shear Broken

    Source: International Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 002::page 04024347-1
    Author:
    Cheng Cao
    ,
    Zengguang Xu
    ,
    Junrui Chai
    ,
    Zhihua Zhang
    DOI: 10.1061/IJGNAI.GMENG-10640
    Publisher: American Society of Civil Engineers
    Abstract: The seepage behavior of a single fracture under the coupled shear–seepage condition is important to the stability of rock mass, especially when shear broken. In this study, coupled shear–seepage tests are conducted on regular tooth single rock fracture with radial fluid flow. The shear failure and changes in the dilation angle were investigated with 1.27, 1.59, 1.91, 2.23, and 2.55 MPa normal stress; the nonlinear seepage behavior was analyzed with 0.2, 0.4, 0.6, and 0.8 MPa hydraulic pressure, and shear broken. The results show that during the shearing process, the nonlinear changes in shear strength, normal deformation, and the dilation angle show great differences with shear displacement, which could be divided into the peak shear, softening shear, and residual shear displacement sections under the influence of shear broken and gouge material. In the peak shear displacement section, normal deformation increased rapidly when the dilation angle was constant; in the softening shear displacement section, normal deformation increased slowly when the dilation angle rapidly decreased, and the normal deformation and dilation angle tended to be stable in the residual shear displacement section. The relationship between the hydraulic gradient and flow rate was consistent with Forchheimer’s law, and the linear and nonlinear term coefficients in Forchheimer’s law show a negative power and negative exponential function with shear displacement, because the joint surface roughness and the degree of the uneven aperture decreased with the influence of shear broken and gouge material. In addition, the values of the mechanical aperture were much larger than the hydraulic aperture, the ratio between the mechanical and hydraulic apertures increased, and decreased nonlinear taken peak shear displacement as the dividing point. Finally, the nonlinear dilatancy seepage model was established by considering the changed dilation angle and hydraulic gradient during the shear process. This study could be a basis for the coupled shear–seepage analysis of network rock mass and similar studies.
    • Download: (1.233Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Dilatancy Seepage Model of Single Rock Fracture with Shear Broken

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305008
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorCheng Cao
    contributor authorZengguang Xu
    contributor authorJunrui Chai
    contributor authorZhihua Zhang
    date accessioned2025-04-20T10:35:14Z
    date available2025-04-20T10:35:14Z
    date copyright12/6/2024 12:00:00 AM
    date issued2025
    identifier otherIJGNAI.GMENG-10640.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305008
    description abstractThe seepage behavior of a single fracture under the coupled shear–seepage condition is important to the stability of rock mass, especially when shear broken. In this study, coupled shear–seepage tests are conducted on regular tooth single rock fracture with radial fluid flow. The shear failure and changes in the dilation angle were investigated with 1.27, 1.59, 1.91, 2.23, and 2.55 MPa normal stress; the nonlinear seepage behavior was analyzed with 0.2, 0.4, 0.6, and 0.8 MPa hydraulic pressure, and shear broken. The results show that during the shearing process, the nonlinear changes in shear strength, normal deformation, and the dilation angle show great differences with shear displacement, which could be divided into the peak shear, softening shear, and residual shear displacement sections under the influence of shear broken and gouge material. In the peak shear displacement section, normal deformation increased rapidly when the dilation angle was constant; in the softening shear displacement section, normal deformation increased slowly when the dilation angle rapidly decreased, and the normal deformation and dilation angle tended to be stable in the residual shear displacement section. The relationship between the hydraulic gradient and flow rate was consistent with Forchheimer’s law, and the linear and nonlinear term coefficients in Forchheimer’s law show a negative power and negative exponential function with shear displacement, because the joint surface roughness and the degree of the uneven aperture decreased with the influence of shear broken and gouge material. In addition, the values of the mechanical aperture were much larger than the hydraulic aperture, the ratio between the mechanical and hydraulic apertures increased, and decreased nonlinear taken peak shear displacement as the dividing point. Finally, the nonlinear dilatancy seepage model was established by considering the changed dilation angle and hydraulic gradient during the shear process. This study could be a basis for the coupled shear–seepage analysis of network rock mass and similar studies.
    publisherAmerican Society of Civil Engineers
    titleNonlinear Dilatancy Seepage Model of Single Rock Fracture with Shear Broken
    typeJournal Article
    journal volume25
    journal issue2
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-10640
    journal fristpage04024347-1
    journal lastpage04024347-9
    page9
    treeInternational Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian