YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mitigation of the Swelling Behavior of Expansive Soils Using Hydrophobic Lignosulfonate: Adsorption Mechanism

    Source: Journal of Materials in Civil Engineering:;2025:;Volume ( 037 ):;issue: 002::page 04024486-1
    Author:
    Richa Mudliar
    ,
    Sathiyamoorthy Rajesh
    DOI: 10.1061/JMCEE7.MTENG-18676
    Publisher: American Society of Civil Engineers
    Abstract: Expansive soils exhibit shrink–swell characteristics due to the presence of clay mineral constituent. Often such soils are stabilized using chemical stabilizers. This study examined the potential application of calcium-based lignosulfonate (LS), a by-product chemical of the pulp industry, in stabilizing expansive soils. Soils with various grain-size distributions and degrees of expansivity were chosen to investigate the efficacy of the chemical treatment. The lignosulfonate was mixed with the chosen soils in different dosages to obtain the optimum dosage of the chemical. The effect of chemical dosage on the grain-size fractions, Atterberg limits, percentage swell, swell potential, and swell-consolidation characteristics of expansive soils were assessed. The influence of chemical dosage and curing period on the evolution of the new mineral phases, microfabrics, and soil structure were investigated. The results indicate the necessity of fixing the optimum dosage of lignosulfonate for different soils. The lignosulfonate addition decreased the swelling characteristics of the chosen expansive soils. The expansive soils rich in silt fraction had a reduction in plasticity and swelling characteristics up to the optimum dosage of LS, but a trend reversal beyond the optimum dosage, which can be attributed to the formation of a high percentage of silicates. In contrast, soils rich in montmorillonite mineral had a significant reduction in plasticity and swelling characteristics up to the optimum LS dosage, beyond which there was a negligible reduction without trend reversal. The possible mechanisms of LS-treated expansive soils in enhancing the engineering properties of expansive soils are addressed.
    • Download: (4.054Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mitigation of the Swelling Behavior of Expansive Soils Using Hydrophobic Lignosulfonate: Adsorption Mechanism

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304945
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorRicha Mudliar
    contributor authorSathiyamoorthy Rajesh
    date accessioned2025-04-20T10:33:16Z
    date available2025-04-20T10:33:16Z
    date copyright11/22/2024 12:00:00 AM
    date issued2025
    identifier otherJMCEE7.MTENG-18676.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304945
    description abstractExpansive soils exhibit shrink–swell characteristics due to the presence of clay mineral constituent. Often such soils are stabilized using chemical stabilizers. This study examined the potential application of calcium-based lignosulfonate (LS), a by-product chemical of the pulp industry, in stabilizing expansive soils. Soils with various grain-size distributions and degrees of expansivity were chosen to investigate the efficacy of the chemical treatment. The lignosulfonate was mixed with the chosen soils in different dosages to obtain the optimum dosage of the chemical. The effect of chemical dosage on the grain-size fractions, Atterberg limits, percentage swell, swell potential, and swell-consolidation characteristics of expansive soils were assessed. The influence of chemical dosage and curing period on the evolution of the new mineral phases, microfabrics, and soil structure were investigated. The results indicate the necessity of fixing the optimum dosage of lignosulfonate for different soils. The lignosulfonate addition decreased the swelling characteristics of the chosen expansive soils. The expansive soils rich in silt fraction had a reduction in plasticity and swelling characteristics up to the optimum dosage of LS, but a trend reversal beyond the optimum dosage, which can be attributed to the formation of a high percentage of silicates. In contrast, soils rich in montmorillonite mineral had a significant reduction in plasticity and swelling characteristics up to the optimum LS dosage, beyond which there was a negligible reduction without trend reversal. The possible mechanisms of LS-treated expansive soils in enhancing the engineering properties of expansive soils are addressed.
    publisherAmerican Society of Civil Engineers
    titleMitigation of the Swelling Behavior of Expansive Soils Using Hydrophobic Lignosulfonate: Adsorption Mechanism
    typeJournal Article
    journal volume37
    journal issue2
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-18676
    journal fristpage04024486-1
    journal lastpage04024486-17
    page17
    treeJournal of Materials in Civil Engineering:;2025:;Volume ( 037 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian