YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Measurement While Drilling Method for Estimating the Uniaxial Compressive Strength of Rocks Considering Frictional Dissipation Energy

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 011::page 04024267-1
    Author:
    Xu Cheng
    ,
    Hua Tang
    ,
    Zhenjun Wu
    ,
    Hui Qin
    ,
    Yonghui Zhang
    DOI: 10.1061/IJGNAI.GMENG-9877
    Publisher: American Society of Civil Engineers
    Abstract: Relationships between drilling parameters and the uniaxial compressive strength (UCS) of rocks are typically established through measurement while drilling (MWD) by analyzing either drilling speed or specific energy. This study enhances the commonly utilized specific energy formula by considering the frictional dissipation energy of the drill bit, along with the initial thrust and torque exerted by the drilling machines. A novel specific energy index, ηp, optimized for rotary drilling applications, was introduced. The modified expressions significantly mitigate the impact of variations in drilling parameters on the specific energy. Employing the concept of a minimum specific energy coefficient, a model was developed that directly relates drilling parameters to the UCS of rocks. An iterative solution method for determining the minimum specific energy coefficient was provided. Extensive MWD tests on intact granite samples, conducted on a specially developed indoor drilling test platform, facilitated the calibration of the minimum specific energy coefficient. The model’s efficacy in UCS estimation was further validated through additional MWD tests on sandstone and limestone. For sandstone, the model’s estimated UCS showed a relative error (RE) ranging from 0.62% to 21.22%, a mean relative error of 11.7%, and a maximum absolute error of 9.75 MPa. Limestone tests revealed an RE range of 1.99%–12.86%, with absolute errors between 2.53 and 16.4 MPa. The UCSs of sandstone and limestone were estimated to lie between 39.65 and 55.71 MPa and 113.29 and 143.90 MPa, respectively, demonstrating close alignment with the results of uniaxial compressive strength tests and confirming the model’s accuracy and reliability for UCS prediction using MWD data.
    • Download: (2.798Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Measurement While Drilling Method for Estimating the Uniaxial Compressive Strength of Rocks Considering Frictional Dissipation Energy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304900
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorXu Cheng
    contributor authorHua Tang
    contributor authorZhenjun Wu
    contributor authorHui Qin
    contributor authorYonghui Zhang
    date accessioned2025-04-20T10:31:54Z
    date available2025-04-20T10:31:54Z
    date copyright9/13/2024 12:00:00 AM
    date issued2024
    identifier otherIJGNAI.GMENG-9877.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304900
    description abstractRelationships between drilling parameters and the uniaxial compressive strength (UCS) of rocks are typically established through measurement while drilling (MWD) by analyzing either drilling speed or specific energy. This study enhances the commonly utilized specific energy formula by considering the frictional dissipation energy of the drill bit, along with the initial thrust and torque exerted by the drilling machines. A novel specific energy index, ηp, optimized for rotary drilling applications, was introduced. The modified expressions significantly mitigate the impact of variations in drilling parameters on the specific energy. Employing the concept of a minimum specific energy coefficient, a model was developed that directly relates drilling parameters to the UCS of rocks. An iterative solution method for determining the minimum specific energy coefficient was provided. Extensive MWD tests on intact granite samples, conducted on a specially developed indoor drilling test platform, facilitated the calibration of the minimum specific energy coefficient. The model’s efficacy in UCS estimation was further validated through additional MWD tests on sandstone and limestone. For sandstone, the model’s estimated UCS showed a relative error (RE) ranging from 0.62% to 21.22%, a mean relative error of 11.7%, and a maximum absolute error of 9.75 MPa. Limestone tests revealed an RE range of 1.99%–12.86%, with absolute errors between 2.53 and 16.4 MPa. The UCSs of sandstone and limestone were estimated to lie between 39.65 and 55.71 MPa and 113.29 and 143.90 MPa, respectively, demonstrating close alignment with the results of uniaxial compressive strength tests and confirming the model’s accuracy and reliability for UCS prediction using MWD data.
    publisherAmerican Society of Civil Engineers
    titleMeasurement While Drilling Method for Estimating the Uniaxial Compressive Strength of Rocks Considering Frictional Dissipation Energy
    typeJournal Article
    journal volume24
    journal issue11
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9877
    journal fristpage04024267-1
    journal lastpage04024267-14
    page14
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian