YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation of Retrofit Strategies to Extend the Service Life of Bridge Structures through Active Control

    Source: Journal of Bridge Engineering:;2025:;Volume ( 030 ):;issue: 002::page 04024109-1
    Author:
    Khairina A. Canny
    ,
    Gennaro Senatore
    ,
    Lucio Blandini
    DOI: 10.1061/JBENF2.BEENG-6925
    Publisher: American Society of Civil Engineers
    Abstract: The durability of aging bridge structures has become a serious societal concern. It has been estimated that 40%–50% of the bridge stock in Europe and 36% in the US is approaching and exceeding the intended service life in some cases. Conventional retrofitting methods are generally effective under predetermined loading scenarios and can mitigate to some extent the effect of damage through strengthening and stiffening. However, typical retrofit measures involve the addition of components, which might cause unwanted stress accumulation, and in addition, they cannot perform adaptation after damage to recover functionality. Adaptive structural systems can modify the response under loading using sensors and mechanical actuators, instead of relying solely on the resistance offered through material and geometry. Previous work has shown that well-designed adaptive structures are effective in reducing peak responses under strong loading resulting in configurations that embody far fewer material and carbon resources than conventional passive systems. This work investigates retrofit strategies using active control through mechanical actuators integrated into the bridge's primary load path or as external systems. The objective is to extend the durability of most common bridge types including beam, tied-arch, and cable-stayed. Two active retrofit systems are considered: (1) an external adaptive tensioning (EAT) for beam bridges; (2) linear actuators placed in the hangers and stays of tied-arch and cable-stayed bridges. Depending on the failure mode (e.g., corrosion-, fatigue-induced), the effect of active control is simulated through a quasi-static controller based on least-squares minimization or through a linear quadratic regulator and explicit time-history analysis. Results shows that the stress reduction achieved by the EAT system retrofitted to a concrete bridge with corrosion-induced damage could extend service by approximately 12 years. In both cable-stayed and tied-arch bridges, the stress range amplitude caused by vehicular traffic is reduced below the constant amplitude fatigue limit, potentially extending service beyond 75 years.
    • Download: (3.334Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation of Retrofit Strategies to Extend the Service Life of Bridge Structures through Active Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304839
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorKhairina A. Canny
    contributor authorGennaro Senatore
    contributor authorLucio Blandini
    date accessioned2025-04-20T10:29:51Z
    date available2025-04-20T10:29:51Z
    date copyright11/26/2024 12:00:00 AM
    date issued2025
    identifier otherJBENF2.BEENG-6925.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304839
    description abstractThe durability of aging bridge structures has become a serious societal concern. It has been estimated that 40%–50% of the bridge stock in Europe and 36% in the US is approaching and exceeding the intended service life in some cases. Conventional retrofitting methods are generally effective under predetermined loading scenarios and can mitigate to some extent the effect of damage through strengthening and stiffening. However, typical retrofit measures involve the addition of components, which might cause unwanted stress accumulation, and in addition, they cannot perform adaptation after damage to recover functionality. Adaptive structural systems can modify the response under loading using sensors and mechanical actuators, instead of relying solely on the resistance offered through material and geometry. Previous work has shown that well-designed adaptive structures are effective in reducing peak responses under strong loading resulting in configurations that embody far fewer material and carbon resources than conventional passive systems. This work investigates retrofit strategies using active control through mechanical actuators integrated into the bridge's primary load path or as external systems. The objective is to extend the durability of most common bridge types including beam, tied-arch, and cable-stayed. Two active retrofit systems are considered: (1) an external adaptive tensioning (EAT) for beam bridges; (2) linear actuators placed in the hangers and stays of tied-arch and cable-stayed bridges. Depending on the failure mode (e.g., corrosion-, fatigue-induced), the effect of active control is simulated through a quasi-static controller based on least-squares minimization or through a linear quadratic regulator and explicit time-history analysis. Results shows that the stress reduction achieved by the EAT system retrofitted to a concrete bridge with corrosion-induced damage could extend service by approximately 12 years. In both cable-stayed and tied-arch bridges, the stress range amplitude caused by vehicular traffic is reduced below the constant amplitude fatigue limit, potentially extending service beyond 75 years.
    publisherAmerican Society of Civil Engineers
    titleInvestigation of Retrofit Strategies to Extend the Service Life of Bridge Structures through Active Control
    typeJournal Article
    journal volume30
    journal issue2
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/JBENF2.BEENG-6925
    journal fristpage04024109-1
    journal lastpage04024109-23
    page23
    treeJournal of Bridge Engineering:;2025:;Volume ( 030 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian