YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Alternative Approach for Estimating the Sodium Adsorption Ratio of Irrigation Water

    Source: Journal of Irrigation and Drainage Engineering:;2024:;Volume ( 150 ):;issue: 006::page 04024031-1
    Author:
    Qiyu Zhou
    ,
    William F. Bleam
    ,
    Douglas J. Soldat
    DOI: 10.1061/JIDEDH.IRENG-10348
    Publisher: American Society of Civil Engineers
    Abstract: Irrigation water with high sodicity risk can lead to soil dispersion, poor drainage, and groundwater contamination. The sodium adsorption ratio (SAR) of soil water is influenced by water loss through evaporation. Evaporation concentrates sodium (Na) and magnesium (Mg), and its impact on soluble calcium (Ca) and alkalinity is more intricate. This study presented a refined sodicity hazard assessment that quantifies the influence of evaporative water loss and calcite precipitation on drainage water. Specifically, the initial equivalent concentration of alkalinity and Ca predominantly determines the potential sodicity risk of drainage water. The alternative approach projects two pathways for potential drainage water SAR, which include limiting the sodium adsorption ratio (LSAR) to represent the upper limit boundary and evaporated-based sodium adsorption ratio (ESAR) to represent the lower limit boundary. When irrigation water alkalinity exceeds the soluble Ca concentration, soluble Ca in the drainage water is limited as calcite precipitates and the drainage water is dominated by Na and Mg. The SAR approaches an upper limit (LSAR) determined by the initial relative concentration of Na and Mg. Conversely, if irrigation water alkalinity is less than the soluble Ca concentration, minimal calcite precipitation occurs, and drainage water is dominated by Na, Mg, and Ca. Then, the SAR approaches a lower limit (ESAR) determined by the initial Ca, Mg, and Na concentrations. To validate the accuracy of this new sodicity risk assessment method, this paper analyzed data extracted from previously published lysimeter studies. Water composition boundaries for each source water were plotted, and these boundaries were compared to the recorded drainage water composition in the lysimeter studies. As salinity increased through evaporation, the drainage water followed a distinct salinization path but remained within the LSAR and ESAR boundaries. This information is essential for irrigation managers to quickly assess water sodicity levels and make timely management decisions. The application of irrigation water with high sodicity risk can lead to soil dispersion. Therefore, an accurate and straightforward approach to assess the sodicity level of the source water is crucial for irrigation management. The practical implementation of the proposed approach for evaluating the sodium (Na) hazard of an irrigation water source begins with source water analysis, considering soluble Na, calcium (Ca), magnesium (Mg), alkalinity, and electrical conductivity (EC). The irrigation water source is then categorized based on its Ca to alkalinity ratio: an alkalinity-rich water source is where the ratio of Alkdw−/Cadw2+≥1, and an alkalinity-poor water source is where Alkdw−/Cadw2+<1. As soil water salinity or EC increases through evaporation, the alkalinity-rich water is likely to approach the upper boundary, which is the limiting sodium adsorption ratio (LSAR)=Fc·Na+/Mg2+/2, and Fc=ECdw/ECiw=1/LF, where ECdw represents the EC of irrigation water, ECiw represents the EC of drainage water, and the leaching fraction (LF) represents the leaching fraction. On the other hand, alkalinity-poor water is likely to remain close to the lower boundary, which is the evaporation-adjusted sodium adsorption ratio (ESAR)=Fc×Na+/(Mg2++Ca2+)/2. This information can help managers determine the suitability of a water source or make sodicity management decisions if poor quality irrigation water is used.
    • Download: (1002.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Alternative Approach for Estimating the Sodium Adsorption Ratio of Irrigation Water

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304820
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorQiyu Zhou
    contributor authorWilliam F. Bleam
    contributor authorDouglas J. Soldat
    date accessioned2025-04-20T10:29:18Z
    date available2025-04-20T10:29:18Z
    date copyright10/9/2024 12:00:00 AM
    date issued2024
    identifier otherJIDEDH.IRENG-10348.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304820
    description abstractIrrigation water with high sodicity risk can lead to soil dispersion, poor drainage, and groundwater contamination. The sodium adsorption ratio (SAR) of soil water is influenced by water loss through evaporation. Evaporation concentrates sodium (Na) and magnesium (Mg), and its impact on soluble calcium (Ca) and alkalinity is more intricate. This study presented a refined sodicity hazard assessment that quantifies the influence of evaporative water loss and calcite precipitation on drainage water. Specifically, the initial equivalent concentration of alkalinity and Ca predominantly determines the potential sodicity risk of drainage water. The alternative approach projects two pathways for potential drainage water SAR, which include limiting the sodium adsorption ratio (LSAR) to represent the upper limit boundary and evaporated-based sodium adsorption ratio (ESAR) to represent the lower limit boundary. When irrigation water alkalinity exceeds the soluble Ca concentration, soluble Ca in the drainage water is limited as calcite precipitates and the drainage water is dominated by Na and Mg. The SAR approaches an upper limit (LSAR) determined by the initial relative concentration of Na and Mg. Conversely, if irrigation water alkalinity is less than the soluble Ca concentration, minimal calcite precipitation occurs, and drainage water is dominated by Na, Mg, and Ca. Then, the SAR approaches a lower limit (ESAR) determined by the initial Ca, Mg, and Na concentrations. To validate the accuracy of this new sodicity risk assessment method, this paper analyzed data extracted from previously published lysimeter studies. Water composition boundaries for each source water were plotted, and these boundaries were compared to the recorded drainage water composition in the lysimeter studies. As salinity increased through evaporation, the drainage water followed a distinct salinization path but remained within the LSAR and ESAR boundaries. This information is essential for irrigation managers to quickly assess water sodicity levels and make timely management decisions. The application of irrigation water with high sodicity risk can lead to soil dispersion. Therefore, an accurate and straightforward approach to assess the sodicity level of the source water is crucial for irrigation management. The practical implementation of the proposed approach for evaluating the sodium (Na) hazard of an irrigation water source begins with source water analysis, considering soluble Na, calcium (Ca), magnesium (Mg), alkalinity, and electrical conductivity (EC). The irrigation water source is then categorized based on its Ca to alkalinity ratio: an alkalinity-rich water source is where the ratio of Alkdw−/Cadw2+≥1, and an alkalinity-poor water source is where Alkdw−/Cadw2+<1. As soil water salinity or EC increases through evaporation, the alkalinity-rich water is likely to approach the upper boundary, which is the limiting sodium adsorption ratio (LSAR)=Fc·Na+/Mg2+/2, and Fc=ECdw/ECiw=1/LF, where ECdw represents the EC of irrigation water, ECiw represents the EC of drainage water, and the leaching fraction (LF) represents the leaching fraction. On the other hand, alkalinity-poor water is likely to remain close to the lower boundary, which is the evaporation-adjusted sodium adsorption ratio (ESAR)=Fc×Na+/(Mg2++Ca2+)/2. This information can help managers determine the suitability of a water source or make sodicity management decisions if poor quality irrigation water is used.
    publisherAmerican Society of Civil Engineers
    titleAn Alternative Approach for Estimating the Sodium Adsorption Ratio of Irrigation Water
    typeJournal Article
    journal volume150
    journal issue6
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/JIDEDH.IRENG-10348
    journal fristpage04024031-1
    journal lastpage04024031-7
    page7
    treeJournal of Irrigation and Drainage Engineering:;2024:;Volume ( 150 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian