YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Integrated Multisource Data Assimilation and NSGA-II Multiobjective Optimization Framework for Streamflow Simulations

    Source: Journal of Hydrologic Engineering:;2024:;Volume ( 029 ):;issue: 006::page 04024040-1
    Author:
    Maziyar Bahrami
    ,
    Nasser Talebbeydokhti
    ,
    Gholamreza Rakhshandehroo
    ,
    Mohammad Reza Nikoo
    ,
    Nasrin Alamdari
    DOI: 10.1061/JHYEFF.HEENG-6263
    Publisher: American Society of Civil Engineers
    Abstract: Given the importance of input data, particularly precipitation, in hydrologic modeling for streamflow simulation, there has been growing emphasis on developing frameworks that harness multiple data sources concurrently to achieve more precise results. In the proposed framework of this study, which relies on the integrated capabilities of the multiobjective optimization model [nondominated sorting genetic algorithm-II (NSGA-II)], the ensemble Kalman filter data assimilation method, and data fusion, rainfall data from multiple sources are incorporated. The utilized framework leads to an improvement in the mean absolute relative error (MARE) index of streamflow simulation results. The innovation of the proposed methodology is the calculation of optimal weights corresponding to the simulated runoff time-series in the fusion model. This is accomplished through a competitive process among a multitude of optimized scenarios simulated within the framework provided. MARE as the main index identified in the objective functions and standard deviation, centered root mean square distance, and the correlation coefficient as auxiliary indices have been considered in this process. In this framework, satellite-based and in situ precipitation data sets are used as the forcing data. The main challenge has been to choose the greatest scenario for fusion among the selected scenarios, which the proposed methodology has overcome. The performance of the suggested methodology is demonstrated for the Siakh-Darengon catchment located in the Fars Province of Iran. According to the results, an average of 14.07% improvement in the MARE index has been achieved after applying the proposed methodology. By utilizing the proposed method, satellite-based rainfall data are integrated alongside ground-based rainfall data in the flood modeling process, resulting in enhanced accuracy in simulation outcomes within the utilized watersheds. Today, influenced by factors such as climate change and anthropogenic alterations to the environment, the issue of flooding and its associated hazards has garnered unprecedented attention from researchers. One of the crucial components in flood modeling is rainfall data, which are collected through various means such as ground stations and satellite sensing instruments. In the past, the primary focus in the process of flood modeling has been on rainfall data recorded at ground stations; nowadays, efforts are being made to further enhance the role of satellite-derived rainfall data in flood modeling, aiming at enhancing their precision. In this study, a fusion model has been developed using the data fusion method and simultaneous utilization of ground-based and satellite rainfall data. Various flood simulation scenarios have been generated using a multiobjective optimization model, and the best scenario is selected through a competitive process. By implementing the proposed methodology in the Siakh-Darengon watershed located in Fars Province, Iran, improvements in simulation results have been achieved, resulting in based on the calculated performance indicators.
    • Download: (2.546Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Integrated Multisource Data Assimilation and NSGA-II Multiobjective Optimization Framework for Streamflow Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304805
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorMaziyar Bahrami
    contributor authorNasser Talebbeydokhti
    contributor authorGholamreza Rakhshandehroo
    contributor authorMohammad Reza Nikoo
    contributor authorNasrin Alamdari
    date accessioned2025-04-20T10:28:50Z
    date available2025-04-20T10:28:50Z
    date copyright9/10/2024 12:00:00 AM
    date issued2024
    identifier otherJHYEFF.HEENG-6263.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304805
    description abstractGiven the importance of input data, particularly precipitation, in hydrologic modeling for streamflow simulation, there has been growing emphasis on developing frameworks that harness multiple data sources concurrently to achieve more precise results. In the proposed framework of this study, which relies on the integrated capabilities of the multiobjective optimization model [nondominated sorting genetic algorithm-II (NSGA-II)], the ensemble Kalman filter data assimilation method, and data fusion, rainfall data from multiple sources are incorporated. The utilized framework leads to an improvement in the mean absolute relative error (MARE) index of streamflow simulation results. The innovation of the proposed methodology is the calculation of optimal weights corresponding to the simulated runoff time-series in the fusion model. This is accomplished through a competitive process among a multitude of optimized scenarios simulated within the framework provided. MARE as the main index identified in the objective functions and standard deviation, centered root mean square distance, and the correlation coefficient as auxiliary indices have been considered in this process. In this framework, satellite-based and in situ precipitation data sets are used as the forcing data. The main challenge has been to choose the greatest scenario for fusion among the selected scenarios, which the proposed methodology has overcome. The performance of the suggested methodology is demonstrated for the Siakh-Darengon catchment located in the Fars Province of Iran. According to the results, an average of 14.07% improvement in the MARE index has been achieved after applying the proposed methodology. By utilizing the proposed method, satellite-based rainfall data are integrated alongside ground-based rainfall data in the flood modeling process, resulting in enhanced accuracy in simulation outcomes within the utilized watersheds. Today, influenced by factors such as climate change and anthropogenic alterations to the environment, the issue of flooding and its associated hazards has garnered unprecedented attention from researchers. One of the crucial components in flood modeling is rainfall data, which are collected through various means such as ground stations and satellite sensing instruments. In the past, the primary focus in the process of flood modeling has been on rainfall data recorded at ground stations; nowadays, efforts are being made to further enhance the role of satellite-derived rainfall data in flood modeling, aiming at enhancing their precision. In this study, a fusion model has been developed using the data fusion method and simultaneous utilization of ground-based and satellite rainfall data. Various flood simulation scenarios have been generated using a multiobjective optimization model, and the best scenario is selected through a competitive process. By implementing the proposed methodology in the Siakh-Darengon watershed located in Fars Province, Iran, improvements in simulation results have been achieved, resulting in based on the calculated performance indicators.
    publisherAmerican Society of Civil Engineers
    titleIntegrated Multisource Data Assimilation and NSGA-II Multiobjective Optimization Framework for Streamflow Simulations
    typeJournal Article
    journal volume29
    journal issue6
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/JHYEFF.HEENG-6263
    journal fristpage04024040-1
    journal lastpage04024040-16
    page16
    treeJournal of Hydrologic Engineering:;2024:;Volume ( 029 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian