YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Integrated Design of Photocatalysis and Structure for Cement Mortar Using Nano-TiO2 Hydrosol

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 012::page 04024404-1
    Author:
    Jihong Jiang
    ,
    Han Wang
    ,
    Yanchun Miao
    ,
    Xiaobin Dong
    ,
    Yali Li
    ,
    Zeyu Lu
    DOI: 10.1061/JMCEE7.MTENG-17570
    Publisher: American Society of Civil Engineers
    Abstract: Due to the large specific surface area and strong van der Waals force, bulk aggregation of nano-TiO2 immediately occurs when it is mixed with fresh cement mixture, limiting its reinforcing efficiency to cement-based materials. This study proposes a novel strategy to improve the mechanical and photocatalytic properties of cement mortar using nano-TiO2 hydrosol instead of conventional nano-TiO2 powder. Compared with pure mortar, the 28-day compressive and flexural strength of mortar with 0.6% by weight nano-TiO2 hydrosol were enhanced by 51% and 15%, respectively, the water absorption and chloride ion diffusion coefficient were decreased by 21% and 31%, respectively. The observed improvements were attributed to the denser microstructure and enhanced micromechanical properties in the bulk matrix and around interfacial transition zone (ITZ), resulting from the better dispersion of nano-TiO2 hydrosol in alkaline environment. In addition, compared with the mortar with nano-TiO2 powder, the degradation efficiency of Rhodamine B and NO by the mortar with nano-TiO2 hydrosol (0.6% by weight) was enhanced by 18.3% and 17.1% at 28 days, respectively. The enhancement resulted from the higher intrinsic photocatalytic activity and larger exposed surface area of nano-TiO2 hydrosol due to better dispersion. The research outcomes demonstrate the potential of using nano-TiO2 hydrosol in cement mortar to significantly increase the mechanical strength, durability, and photocatalytic activity, which can lead to the development of cement-based constructions with the integrated design of functionality and structure.
    • Download: (3.193Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Integrated Design of Photocatalysis and Structure for Cement Mortar Using Nano-TiO2 Hydrosol

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304804
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJihong Jiang
    contributor authorHan Wang
    contributor authorYanchun Miao
    contributor authorXiaobin Dong
    contributor authorYali Li
    contributor authorZeyu Lu
    date accessioned2025-04-20T10:28:48Z
    date available2025-04-20T10:28:48Z
    date copyright9/24/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-17570.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304804
    description abstractDue to the large specific surface area and strong van der Waals force, bulk aggregation of nano-TiO2 immediately occurs when it is mixed with fresh cement mixture, limiting its reinforcing efficiency to cement-based materials. This study proposes a novel strategy to improve the mechanical and photocatalytic properties of cement mortar using nano-TiO2 hydrosol instead of conventional nano-TiO2 powder. Compared with pure mortar, the 28-day compressive and flexural strength of mortar with 0.6% by weight nano-TiO2 hydrosol were enhanced by 51% and 15%, respectively, the water absorption and chloride ion diffusion coefficient were decreased by 21% and 31%, respectively. The observed improvements were attributed to the denser microstructure and enhanced micromechanical properties in the bulk matrix and around interfacial transition zone (ITZ), resulting from the better dispersion of nano-TiO2 hydrosol in alkaline environment. In addition, compared with the mortar with nano-TiO2 powder, the degradation efficiency of Rhodamine B and NO by the mortar with nano-TiO2 hydrosol (0.6% by weight) was enhanced by 18.3% and 17.1% at 28 days, respectively. The enhancement resulted from the higher intrinsic photocatalytic activity and larger exposed surface area of nano-TiO2 hydrosol due to better dispersion. The research outcomes demonstrate the potential of using nano-TiO2 hydrosol in cement mortar to significantly increase the mechanical strength, durability, and photocatalytic activity, which can lead to the development of cement-based constructions with the integrated design of functionality and structure.
    publisherAmerican Society of Civil Engineers
    titleIntegrated Design of Photocatalysis and Structure for Cement Mortar Using Nano-TiO2 Hydrosol
    typeJournal Article
    journal volume36
    journal issue12
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17570
    journal fristpage04024404-1
    journal lastpage04024404-12
    page12
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian