YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Frequency-Based Early Crack Detection and Damage Severity Measure in Structural Glass Members: Application to Beams in Bending

    Source: Journal of Architectural Engineering:;2024:;Volume ( 030 ):;issue: 004::page 04024031-1
    Author:
    Chiara Bedon
    DOI: 10.1061/JAEIED.AEENG-1670
    Publisher: American Society of Civil Engineers
    Abstract: As is known, the propagation of cracks in a structural member is associated with local modifications of rigidity and thus possible major effects that can strongly affect its load-bearing capacity and dynamic parameters. As such, among others, the natural frequency control represents a consolidated and efficient approach for damage detection, damage severity assessment, and in situ monitoring for several structural typologies. In this paper, attention is given to typically brittle-in-tension structural glass members and to the analysis of first-crack initiation in terms of natural frequency decrease. The goal is to assess the potential and feasibility of a standardized approach for in situ structural health monitoring (SHM) assessment. To this aim, the investigation takes advantage of a literature analytical model for frequency assessment (i.e., as a function of crack position and depth), and of finite-element (FE) numerical simulations carried out to predict the cracked vibration frequency of various configurations of technical interest. As a first step of this possible methodology assessment, glass beams under an in-plane bending setup are considered, given that they are largely used as stiffeners or fins. It is shown that while glass material is typically brittle in tension and cracks can originate from edges due to several reasons, traditional frequency-based monitoring tools can be efficiently adapted for early detection and to quantify damage in existing glass structures. For the examined configurations, it is shown that frequency reductions up to ≈−20% can be expected due to first-crack initiation. Most importantly, the FE numerical analyses show that crack shape/geometry can further emphasize the expected frequency decrease, and thus additionally enforce the need of specific protocols/performance indicators for SHM purposes in existing structures, as well as for the optimal design of new systems.
    • Download: (1.547Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Frequency-Based Early Crack Detection and Damage Severity Measure in Structural Glass Members: Application to Beams in Bending

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304674
    Collections
    • Journal of Architectural Engineering

    Show full item record

    contributor authorChiara Bedon
    date accessioned2025-04-20T10:24:51Z
    date available2025-04-20T10:24:51Z
    date copyright9/5/2024 12:00:00 AM
    date issued2024
    identifier otherJAEIED.AEENG-1670.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304674
    description abstractAs is known, the propagation of cracks in a structural member is associated with local modifications of rigidity and thus possible major effects that can strongly affect its load-bearing capacity and dynamic parameters. As such, among others, the natural frequency control represents a consolidated and efficient approach for damage detection, damage severity assessment, and in situ monitoring for several structural typologies. In this paper, attention is given to typically brittle-in-tension structural glass members and to the analysis of first-crack initiation in terms of natural frequency decrease. The goal is to assess the potential and feasibility of a standardized approach for in situ structural health monitoring (SHM) assessment. To this aim, the investigation takes advantage of a literature analytical model for frequency assessment (i.e., as a function of crack position and depth), and of finite-element (FE) numerical simulations carried out to predict the cracked vibration frequency of various configurations of technical interest. As a first step of this possible methodology assessment, glass beams under an in-plane bending setup are considered, given that they are largely used as stiffeners or fins. It is shown that while glass material is typically brittle in tension and cracks can originate from edges due to several reasons, traditional frequency-based monitoring tools can be efficiently adapted for early detection and to quantify damage in existing glass structures. For the examined configurations, it is shown that frequency reductions up to ≈−20% can be expected due to first-crack initiation. Most importantly, the FE numerical analyses show that crack shape/geometry can further emphasize the expected frequency decrease, and thus additionally enforce the need of specific protocols/performance indicators for SHM purposes in existing structures, as well as for the optimal design of new systems.
    publisherAmerican Society of Civil Engineers
    titleFrequency-Based Early Crack Detection and Damage Severity Measure in Structural Glass Members: Application to Beams in Bending
    typeJournal Article
    journal volume30
    journal issue4
    journal titleJournal of Architectural Engineering
    identifier doi10.1061/JAEIED.AEENG-1670
    journal fristpage04024031-1
    journal lastpage04024031-10
    page10
    treeJournal of Architectural Engineering:;2024:;Volume ( 030 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian