YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flexural Characteristics of Tailings Cemented with Fiber-Reinforced Green Composite Cementitious Matrix

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 011::page 04024382-1
    Author:
    Xiangdong Zhang
    ,
    Jiaze Li
    ,
    Shuai Pang
    ,
    Kaixin Zhu
    ,
    Cheng Yang
    ,
    Xuefeng Zhang
    ,
    Lijuan Su
    ,
    Jiashun Liu
    DOI: 10.1061/JMCEE7.MTENG-17575
    Publisher: American Society of Civil Engineers
    Abstract: Backfilling mine goafs can significantly advance the mining industry; however, few researchers have used geopolymers reinforced with polypropylene fibers as filling materials. In this study, the flexural properties of fiber-reinforced green composite cementitious matrix–cemented tailings were examined, and the evolution mechanism of the internal structural properties of the prepared composite materials was determined. For this purpose, three-point bending tests, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction were performed on composite samples with different blending ratios, and discrete-element numerical simulations were conducted using PFC3D particle flow simulation software. The obtained results revealed that the flexural strength and fracture properties of the studied samples increased with increasing NaOH content, decreased with increasing water-to-solid ratio, and first increased and then decreased with increasing fiber content. At a fiber content of 0.6%, the reinforcement effect reached a local optimum. The higher the NaOH content, the more efficiently fly ash and slag formed polymerization products in an alkaline environment, which contained tailing sand aggregate particles, increasing the compactness of the composite structure. The fibers in the composite material were distributed both as a single inlay and as a three-dimensional network structure to form an effective wrapping and supporting system, which further improved the flexural performance of the sample. The PFC3D simulation data were consistent with the results of three-point bending tests, illustrating the sample degradation process. The findings of this work can provide a theoretical basis for the development of fiber-reinforced green sand filling materials for mine replenishment.
    • Download: (4.689Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flexural Characteristics of Tailings Cemented with Fiber-Reinforced Green Composite Cementitious Matrix

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304643
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorXiangdong Zhang
    contributor authorJiaze Li
    contributor authorShuai Pang
    contributor authorKaixin Zhu
    contributor authorCheng Yang
    contributor authorXuefeng Zhang
    contributor authorLijuan Su
    contributor authorJiashun Liu
    date accessioned2025-04-20T10:23:50Z
    date available2025-04-20T10:23:50Z
    date copyright9/4/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-17575.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304643
    description abstractBackfilling mine goafs can significantly advance the mining industry; however, few researchers have used geopolymers reinforced with polypropylene fibers as filling materials. In this study, the flexural properties of fiber-reinforced green composite cementitious matrix–cemented tailings were examined, and the evolution mechanism of the internal structural properties of the prepared composite materials was determined. For this purpose, three-point bending tests, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction were performed on composite samples with different blending ratios, and discrete-element numerical simulations were conducted using PFC3D particle flow simulation software. The obtained results revealed that the flexural strength and fracture properties of the studied samples increased with increasing NaOH content, decreased with increasing water-to-solid ratio, and first increased and then decreased with increasing fiber content. At a fiber content of 0.6%, the reinforcement effect reached a local optimum. The higher the NaOH content, the more efficiently fly ash and slag formed polymerization products in an alkaline environment, which contained tailing sand aggregate particles, increasing the compactness of the composite structure. The fibers in the composite material were distributed both as a single inlay and as a three-dimensional network structure to form an effective wrapping and supporting system, which further improved the flexural performance of the sample. The PFC3D simulation data were consistent with the results of three-point bending tests, illustrating the sample degradation process. The findings of this work can provide a theoretical basis for the development of fiber-reinforced green sand filling materials for mine replenishment.
    publisherAmerican Society of Civil Engineers
    titleFlexural Characteristics of Tailings Cemented with Fiber-Reinforced Green Composite Cementitious Matrix
    typeJournal Article
    journal volume36
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17575
    journal fristpage04024382-1
    journal lastpage04024382-14
    page14
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian