YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fabrication and Performance Evaluation of High-Performance SBS-Modified Asphalt through Secondary Modification with Aminated Graphene Oxide

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 012::page 04024417-1
    Author:
    Song Yang
    ,
    Hongzhou Zhu
    ,
    Xiaosi Yang
    ,
    Qiqi Tan
    ,
    Yuanyuan Chen
    DOI: 10.1061/JMCEE7.MTENG-18096
    Publisher: American Society of Civil Engineers
    Abstract: Adding graphene microflakes with excellent mechanical properties to asphalt materials can promote the development of sustainable transportation infrastructure. Recently, graphene oxide–modified asphalt has gained popularity due to its enhanced storage stability, ease of construction, and high-temperature stability. However, the modification mechanism of graphene oxide and polymer modifiers within asphalt remains unclear. This study aims to investigate the mechanism of action of aminated graphene oxide and styrene-butadiene-styrene (SBS) within asphalt and elucidate their influence on the properties of composite-modified asphalt. This research utilized X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), dynamic shear rheometer (DSR), multiple stress creep recovery (MSCR), bending beam rheometer (BBR), and thermogravimetry analysis (TGA) to explore the performance of composite-modified asphalt and the modification mechanism of modifiers. X-ray diffraction and Fourier transform infrared spectroscopy showed that the modification effect was better, the surface wrinkles of modified graphene oxide increased, and the interlayer spacing expanded, which was favorable to its compatibility with asphalt. Conventional test and Brookfield viscosity revealed that composite-modified asphalt possessed favorable high-temperature resistance and plasticity compared to the original asphalt. Additionally, dynamic shear rheological and storage stability tests indicated that the addition of aminated graphene oxide not only improved the viscoelastic properties of asphalt but also enhanced the compatibility between various substances. Multiple stress creep recovery and bending beam rheometer tests measurements confirm that the composite-modified asphalt exhibits superior high-temperature rutting resistance and low-temperature crack resistance. Fluorescence microscopy analysis demonstrated the uniform distribution of the modifier and SBS within the asphalt, while thermogravimetry analysis revealed that composite-modified asphalt exhibited higher thermal stability compared to SBS-modified asphalt. This study holds significant importance in advancing the development and practical application of road modification materials.
    • Download: (1.463Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fabrication and Performance Evaluation of High-Performance SBS-Modified Asphalt through Secondary Modification with Aminated Graphene Oxide

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304611
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorSong Yang
    contributor authorHongzhou Zhu
    contributor authorXiaosi Yang
    contributor authorQiqi Tan
    contributor authorYuanyuan Chen
    date accessioned2025-04-20T10:23:03Z
    date available2025-04-20T10:23:03Z
    date copyright9/27/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-18096.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304611
    description abstractAdding graphene microflakes with excellent mechanical properties to asphalt materials can promote the development of sustainable transportation infrastructure. Recently, graphene oxide–modified asphalt has gained popularity due to its enhanced storage stability, ease of construction, and high-temperature stability. However, the modification mechanism of graphene oxide and polymer modifiers within asphalt remains unclear. This study aims to investigate the mechanism of action of aminated graphene oxide and styrene-butadiene-styrene (SBS) within asphalt and elucidate their influence on the properties of composite-modified asphalt. This research utilized X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), dynamic shear rheometer (DSR), multiple stress creep recovery (MSCR), bending beam rheometer (BBR), and thermogravimetry analysis (TGA) to explore the performance of composite-modified asphalt and the modification mechanism of modifiers. X-ray diffraction and Fourier transform infrared spectroscopy showed that the modification effect was better, the surface wrinkles of modified graphene oxide increased, and the interlayer spacing expanded, which was favorable to its compatibility with asphalt. Conventional test and Brookfield viscosity revealed that composite-modified asphalt possessed favorable high-temperature resistance and plasticity compared to the original asphalt. Additionally, dynamic shear rheological and storage stability tests indicated that the addition of aminated graphene oxide not only improved the viscoelastic properties of asphalt but also enhanced the compatibility between various substances. Multiple stress creep recovery and bending beam rheometer tests measurements confirm that the composite-modified asphalt exhibits superior high-temperature rutting resistance and low-temperature crack resistance. Fluorescence microscopy analysis demonstrated the uniform distribution of the modifier and SBS within the asphalt, while thermogravimetry analysis revealed that composite-modified asphalt exhibited higher thermal stability compared to SBS-modified asphalt. This study holds significant importance in advancing the development and practical application of road modification materials.
    publisherAmerican Society of Civil Engineers
    titleFabrication and Performance Evaluation of High-Performance SBS-Modified Asphalt through Secondary Modification with Aminated Graphene Oxide
    typeJournal Article
    journal volume36
    journal issue12
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-18096
    journal fristpage04024417-1
    journal lastpage04024417-12
    page12
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian