YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study on Microbially Induced Carbonate Precipitation Reinforcement of Silty Sand in an Artificial Seawater Environment

    Source: International Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 004::page 04025030-1
    Author:
    Shixing Cai
    ,
    Yi Tang
    ,
    Zhengyin Cai
    ,
    Yunfei Guan
    DOI: 10.1061/IJGNAI.GMENG-10285
    Publisher: American Society of Civil Engineers
    Abstract: Microbially induced carbonate precipitation (MICP) is an eco-friendly technique for weak soil reinforcement. In this study, Sporosacina pasteurii was used to strengthen silty sand after multigradient domestication in an artificial seawater environment. The efficiency of MICP was investigated by carrying out a series of macroscopic and microscopic tests on biocemented silty sand specimens. It was found that the salt ions in seawater impacted bacterial activity. The best activity of the bacterial solution in the seawater environment was achieved after five-gradient domestication, which was approximately 8% lower than that in the deionized water environment. The significant effects of domesticated bacteria on silty sand reinforcement were demonstrated by the content of precipitated carbonate and the unconfined compressive strength (UCS) of the treated specimens. The seawater positively impacted the MICP procedure due to the roles of calcium and magnesium ions, indicated by the X-ray diffraction spectra. The scanning electron microscopy (SEM) results showed that carbonate precipitations distributed primarily on the surfaces and near the contact points of the soil particles, contributing to the soil strength. The cementation solution concentration and injection rate significantly influenced the content and distribution of carbonate precipitations and UCS of the biocemented silty sand, and the values corresponding to good reinforcement efficiency were 1.0 mol/L and 1.0 mL/min, respectively. The results of consolidated undrained triaxial tests showed that the mechanical properties of treated specimens were influenced by biocementation cycles. It was found that the stress–strain behavior of biocemented samples changed from strain hardening to strain softening when the number of reinforcement cycles increased. The peak strength of silty sand was increased by 1.9–3 times after 5 times MICP treatment. The effect of biocementation cycles on the shear strength parameters could be represented by relating the effective friction angle and effective cohesion of biocemented silty sand to the carbonate content.
    • Download: (1.975Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study on Microbially Induced Carbonate Precipitation Reinforcement of Silty Sand in an Artificial Seawater Environment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304574
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorShixing Cai
    contributor authorYi Tang
    contributor authorZhengyin Cai
    contributor authorYunfei Guan
    date accessioned2025-04-20T10:22:02Z
    date available2025-04-20T10:22:02Z
    date copyright1/27/2025 12:00:00 AM
    date issued2025
    identifier otherIJGNAI.GMENG-10285.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304574
    description abstractMicrobially induced carbonate precipitation (MICP) is an eco-friendly technique for weak soil reinforcement. In this study, Sporosacina pasteurii was used to strengthen silty sand after multigradient domestication in an artificial seawater environment. The efficiency of MICP was investigated by carrying out a series of macroscopic and microscopic tests on biocemented silty sand specimens. It was found that the salt ions in seawater impacted bacterial activity. The best activity of the bacterial solution in the seawater environment was achieved after five-gradient domestication, which was approximately 8% lower than that in the deionized water environment. The significant effects of domesticated bacteria on silty sand reinforcement were demonstrated by the content of precipitated carbonate and the unconfined compressive strength (UCS) of the treated specimens. The seawater positively impacted the MICP procedure due to the roles of calcium and magnesium ions, indicated by the X-ray diffraction spectra. The scanning electron microscopy (SEM) results showed that carbonate precipitations distributed primarily on the surfaces and near the contact points of the soil particles, contributing to the soil strength. The cementation solution concentration and injection rate significantly influenced the content and distribution of carbonate precipitations and UCS of the biocemented silty sand, and the values corresponding to good reinforcement efficiency were 1.0 mol/L and 1.0 mL/min, respectively. The results of consolidated undrained triaxial tests showed that the mechanical properties of treated specimens were influenced by biocementation cycles. It was found that the stress–strain behavior of biocemented samples changed from strain hardening to strain softening when the number of reinforcement cycles increased. The peak strength of silty sand was increased by 1.9–3 times after 5 times MICP treatment. The effect of biocementation cycles on the shear strength parameters could be represented by relating the effective friction angle and effective cohesion of biocemented silty sand to the carbonate content.
    publisherAmerican Society of Civil Engineers
    titleExperimental Study on Microbially Induced Carbonate Precipitation Reinforcement of Silty Sand in an Artificial Seawater Environment
    typeJournal Article
    journal volume25
    journal issue4
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-10285
    journal fristpage04025030-1
    journal lastpage04025030-11
    page11
    treeInternational Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian