YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation on Effects of Diesel Oxidation Catalysts on Emission Characteristics of a Methanol-Diesel Dual-Fuel Engine

    Source: Journal of Energy Engineering:;2025:;Volume ( 151 ):;issue: 001::page 04024040-1
    Author:
    Fenlian Huang
    ,
    Dakui Huang
    ,
    Mingding Wan
    ,
    Jilin Lei
    ,
    Lizhong Shen
    DOI: 10.1061/JLEED9.EYENG-5804
    Publisher: American Society of Civil Engineers
    Abstract: Methanol fuel is a promising hydrogen carrier for engine carbon neutrality. However, the high unburned hydrocarbon (UHC) and carbon monoxide (CO) emission levels at low loads partly restrain its application in diesel engines. To identify the underlying causes of pollutants formation and the effects of diesel oxidation catalyst (DOC) on the emission characteristics in methanol-diesel reactivity controlled compression ignition (RCCI) engines and provide a theoretical basis for the development of methanol engines, several parametric experiments were performed by changing the methanol substitution rate (MSR) and engine load at 1,600  revolutions/min (rpm). The variation of total hydrocarbons (THC), CO, oxides of nitrogen (NOx), unburned methanol (MeOH), and formaldehyde (HCHO) emissions in methanol-diesel RCCI mode and the conventional diesel combustion (CDC) mode before and after DOC were also experimentally investigated. The results revealed that as the MSR increased in RCCI combustion, the THC, CO, MeOH, and HCHO emissions increased, the DOC inlet temperature reduced gradually, and the NO and NOx emissions decreased dramatically, but the NO2 emissions and NO2/NOx rate increased. As the engine load level increased, the THC, CO, MeOH, and HCHO emissions decreased, and the DOC inlet temperature increased. In RCCI mode, the conversion efficiencies of DOC for THC, MeOH, and HCHO at 30% load were quite low due to the lower DOC inlet temperature; the HCHO emissions at the DOC outlet were even higher than at the DOC inlet. With the increase of load, the conversion efficiency of DOC for THC, CO, MeOH, and HCHO emissions was continuously improved. At 90% load, the conversion efficiency of the DOC for THC, CO, MeOH, and HCHO emissions was greater than 98%. DOC can effectively reduce THC, CO, MeOH, and HCHO emissions from methanol-diesel dual-fuel engines. The NO2/NOx rate at the DOC outlet increased in CDC mode, but it decreased in RCCI mode. Exhaust thermal management strategies should be applied to improve the exhaust gas temperature to realize highly efficient conversion for DOC at medium and low loads in RCCI operation.
    • Download: (2.072Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation on Effects of Diesel Oxidation Catalysts on Emission Characteristics of a Methanol-Diesel Dual-Fuel Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304562
    Collections
    • Journal of Energy Engineering

    Show full item record

    contributor authorFenlian Huang
    contributor authorDakui Huang
    contributor authorMingding Wan
    contributor authorJilin Lei
    contributor authorLizhong Shen
    date accessioned2025-04-20T10:21:47Z
    date available2025-04-20T10:21:47Z
    date copyright11/9/2024 12:00:00 AM
    date issued2025
    identifier otherJLEED9.EYENG-5804.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304562
    description abstractMethanol fuel is a promising hydrogen carrier for engine carbon neutrality. However, the high unburned hydrocarbon (UHC) and carbon monoxide (CO) emission levels at low loads partly restrain its application in diesel engines. To identify the underlying causes of pollutants formation and the effects of diesel oxidation catalyst (DOC) on the emission characteristics in methanol-diesel reactivity controlled compression ignition (RCCI) engines and provide a theoretical basis for the development of methanol engines, several parametric experiments were performed by changing the methanol substitution rate (MSR) and engine load at 1,600  revolutions/min (rpm). The variation of total hydrocarbons (THC), CO, oxides of nitrogen (NOx), unburned methanol (MeOH), and formaldehyde (HCHO) emissions in methanol-diesel RCCI mode and the conventional diesel combustion (CDC) mode before and after DOC were also experimentally investigated. The results revealed that as the MSR increased in RCCI combustion, the THC, CO, MeOH, and HCHO emissions increased, the DOC inlet temperature reduced gradually, and the NO and NOx emissions decreased dramatically, but the NO2 emissions and NO2/NOx rate increased. As the engine load level increased, the THC, CO, MeOH, and HCHO emissions decreased, and the DOC inlet temperature increased. In RCCI mode, the conversion efficiencies of DOC for THC, MeOH, and HCHO at 30% load were quite low due to the lower DOC inlet temperature; the HCHO emissions at the DOC outlet were even higher than at the DOC inlet. With the increase of load, the conversion efficiency of DOC for THC, CO, MeOH, and HCHO emissions was continuously improved. At 90% load, the conversion efficiency of the DOC for THC, CO, MeOH, and HCHO emissions was greater than 98%. DOC can effectively reduce THC, CO, MeOH, and HCHO emissions from methanol-diesel dual-fuel engines. The NO2/NOx rate at the DOC outlet increased in CDC mode, but it decreased in RCCI mode. Exhaust thermal management strategies should be applied to improve the exhaust gas temperature to realize highly efficient conversion for DOC at medium and low loads in RCCI operation.
    publisherAmerican Society of Civil Engineers
    titleExperimental Investigation on Effects of Diesel Oxidation Catalysts on Emission Characteristics of a Methanol-Diesel Dual-Fuel Engine
    typeJournal Article
    journal volume151
    journal issue1
    journal titleJournal of Energy Engineering
    identifier doi10.1061/JLEED9.EYENG-5804
    journal fristpage04024040-1
    journal lastpage04024040-11
    page11
    treeJournal of Energy Engineering:;2025:;Volume ( 151 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian