YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of the Effects of Climate Change and Environmental Parameters on Evaporation and Settlement of Unsaturated Soil

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 011::page 04024251-1
    Author:
    S. Morteza Mousavi
    ,
    M. Hesham El Naggar
    ,
    Ernest Yanful
    ,
    Ali Pak
    ,
    Behrouz Gatmiri
    DOI: 10.1061/IJGNAI.GMENG-8227
    Publisher: American Society of Civil Engineers
    Abstract: Realistic estimates of evaporation from unsaturated soils, which are important for many geotechnical and geoenvironmental applications, need to be considered in the context of soil settlement, and require thermohydromechanical (THM) analysis. Evaporation also depends on environmental parameters, including air temperature, air relative humidity, net radiation, and wind speed. Therefore, a consideration of atmospheric coupling in predicting evaporation is also necessary. In this study, the two-dimensional model EVAP1––which numerically estimates evaporation from unsaturated soil using THM and employing a soil–atmosphere model––was used to conduct a parametric study in order to investigate the effects of variation in environmental parameters and to study the effects of climate change on potential and actual evaporation and soil settlement. We found that the evaporation rate increased nonlinearly with increases in air temperature, net radiation, and wind speed, but decreases with an increase in relative humidity. However, the effect of a change in wind speed was less than the effect of a change in the three other environmental parameters. In addition, the change in evaporation rate differed in different regions with different air temperatures. For example, the temperature change had more of an effect on the evaporation rate at higher temperatures. In addition, neglecting soil settlement led to an overestimation of evaporation, albeit the amount of evaporation was almost the same whether soil settlement was considered or not, both at the beginning of the evaporation process, when potential evaporation was dominant, and at the end, when the water content in both cases had decreased almost to the residual water content, and the evaporation was minimized. The difference in the amount of evaporation was greater in the middle of the evaporation process, when actual evaporation dominated.
    • Download: (1.973Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of the Effects of Climate Change and Environmental Parameters on Evaporation and Settlement of Unsaturated Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304529
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorS. Morteza Mousavi
    contributor authorM. Hesham El Naggar
    contributor authorErnest Yanful
    contributor authorAli Pak
    contributor authorBehrouz Gatmiri
    date accessioned2025-04-20T10:20:53Z
    date available2025-04-20T10:20:53Z
    date copyright9/3/2024 12:00:00 AM
    date issued2024
    identifier otherIJGNAI.GMENG-8227.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304529
    description abstractRealistic estimates of evaporation from unsaturated soils, which are important for many geotechnical and geoenvironmental applications, need to be considered in the context of soil settlement, and require thermohydromechanical (THM) analysis. Evaporation also depends on environmental parameters, including air temperature, air relative humidity, net radiation, and wind speed. Therefore, a consideration of atmospheric coupling in predicting evaporation is also necessary. In this study, the two-dimensional model EVAP1––which numerically estimates evaporation from unsaturated soil using THM and employing a soil–atmosphere model––was used to conduct a parametric study in order to investigate the effects of variation in environmental parameters and to study the effects of climate change on potential and actual evaporation and soil settlement. We found that the evaporation rate increased nonlinearly with increases in air temperature, net radiation, and wind speed, but decreases with an increase in relative humidity. However, the effect of a change in wind speed was less than the effect of a change in the three other environmental parameters. In addition, the change in evaporation rate differed in different regions with different air temperatures. For example, the temperature change had more of an effect on the evaporation rate at higher temperatures. In addition, neglecting soil settlement led to an overestimation of evaporation, albeit the amount of evaporation was almost the same whether soil settlement was considered or not, both at the beginning of the evaporation process, when potential evaporation was dominant, and at the end, when the water content in both cases had decreased almost to the residual water content, and the evaporation was minimized. The difference in the amount of evaporation was greater in the middle of the evaporation process, when actual evaporation dominated.
    publisherAmerican Society of Civil Engineers
    titleEvaluation of the Effects of Climate Change and Environmental Parameters on Evaporation and Settlement of Unsaturated Soil
    typeJournal Article
    journal volume24
    journal issue11
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-8227
    journal fristpage04024251-1
    journal lastpage04024251-14
    page14
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian