YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Performance of Wedge-Shaped Self-Leveling Sleepers in Railway Transition Zones

    Source: International Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 002::page 04024344-1
    Author:
    Xin He
    ,
    Wanming Zhai
    ,
    Yunlong Guo
    DOI: 10.1061/IJGNAI.GMENG-10307
    Publisher: American Society of Civil Engineers
    Abstract: Hanging sleepers, which result from the differential settlement of the ballast layer, are a prevalent issue that leads to the rapid degradation of track components that include the ballast, sleeper, fastener, and rail. A novel type of sleeper, the wedge-shaped self-leveling sleeper (WSS), was proposed as a solution to the hanging sleeper problem. The WSS leverages the train’s dynamic loading and the gravity of the ballast to naturally allow the ballast particles to fill the gap between the ballast and the sleeper. This paper focuses on the dynamic performance of the WSS from different aspects, which include wedge angles (30°, 45°, and 60°), sleeper materials (concrete and plastic), and the number of WSS to replace regular sleepers in the transition zone. A series of numerical modeling [which coupled multibody simulation (MBS) and discrete-element methods (DEM)] were conducted to design, optimize, and test the WSS. The results reveal that a concrete WSS is well-suited to address the problem of hanging sleepers in transition zones. The WSS with a 45° angle demonstrated superior performance compared with other types of WSS. Importantly, the WSS could reduce vibrations in the vehicle and track, even when dealing with hanging sleepers. Due to the self-leveling function, the WSS shows significant promise for applications in transition zones, which could reduce the frequent need for track geometry maintenance.
    • Download: (4.554Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Performance of Wedge-Shaped Self-Leveling Sleepers in Railway Transition Zones

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304380
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorXin He
    contributor authorWanming Zhai
    contributor authorYunlong Guo
    date accessioned2025-04-20T10:16:51Z
    date available2025-04-20T10:16:51Z
    date copyright12/3/2024 12:00:00 AM
    date issued2025
    identifier otherIJGNAI.GMENG-10307.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304380
    description abstractHanging sleepers, which result from the differential settlement of the ballast layer, are a prevalent issue that leads to the rapid degradation of track components that include the ballast, sleeper, fastener, and rail. A novel type of sleeper, the wedge-shaped self-leveling sleeper (WSS), was proposed as a solution to the hanging sleeper problem. The WSS leverages the train’s dynamic loading and the gravity of the ballast to naturally allow the ballast particles to fill the gap between the ballast and the sleeper. This paper focuses on the dynamic performance of the WSS from different aspects, which include wedge angles (30°, 45°, and 60°), sleeper materials (concrete and plastic), and the number of WSS to replace regular sleepers in the transition zone. A series of numerical modeling [which coupled multibody simulation (MBS) and discrete-element methods (DEM)] were conducted to design, optimize, and test the WSS. The results reveal that a concrete WSS is well-suited to address the problem of hanging sleepers in transition zones. The WSS with a 45° angle demonstrated superior performance compared with other types of WSS. Importantly, the WSS could reduce vibrations in the vehicle and track, even when dealing with hanging sleepers. Due to the self-leveling function, the WSS shows significant promise for applications in transition zones, which could reduce the frequent need for track geometry maintenance.
    publisherAmerican Society of Civil Engineers
    titleDynamic Performance of Wedge-Shaped Self-Leveling Sleepers in Railway Transition Zones
    typeJournal Article
    journal volume25
    journal issue2
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-10307
    journal fristpage04024344-1
    journal lastpage04024344-17
    page17
    treeInternational Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian