YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design Method and Engineering Practice for Long and Steep High-Speed Railway Ramps in Tough Mountainous Areas

    Source: Journal of Transportation Engineering, Part A: Systems:;2025:;Volume ( 151 ):;issue: 001::page 04024088-1
    Author:
    Yi Xie
    ,
    Shuqiang Li
    ,
    Jin Shi
    ,
    Haowei Yu
    DOI: 10.1061/JTEPBS.TEENG-8289
    Publisher: American Society of Civil Engineers
    Abstract: To better meet the safety requirements and economic benefits of mountainous high-speed railways, long and steep ramps are implemented to overcome elevation obstacles. In this paper, the impacts of speed reduction, operation safety risks, line transportation capacity, maintenance, and operation quality on long and steep ramps are comprehensively considered, and a design method for high-speed railways with long and steep ramps in tough mountainous areas is proposed. This method has also been applied in engineering practice. Considering factors such as the operational organization and quality of electric multiple units (EMUs), it is recommended that there be no restrictions on the ramp sections of EMUs with a design speed of 250  km/h, which makes up 15‰ or less of existing railways in China. The lengths of the ramp sections with slopes of 20‰, 25‰, and 30‰ should not exceed 17, 9, or 6 km, respectively. The ramp section of the EMU running line with a design speed of 350  km/h should be implemented in a way that ensures the relevant explanatory requirements are maintained according to the existing specifications. A practical verification of the comparison and selection of the line schemes of the Junlian to Zhaotong line section of the Chongqing–Kunming high-speed railway shows that the proposed design method can better meet the high-speed railway design needs for long ascending and descending grades in mountainous areas and provide theoretical support for the optimization and selection of line schemes.
    • Download: (5.566Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design Method and Engineering Practice for Long and Steep High-Speed Railway Ramps in Tough Mountainous Areas

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304312
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorYi Xie
    contributor authorShuqiang Li
    contributor authorJin Shi
    contributor authorHaowei Yu
    date accessioned2025-04-20T10:15:02Z
    date available2025-04-20T10:15:02Z
    date copyright10/29/2024 12:00:00 AM
    date issued2025
    identifier otherJTEPBS.TEENG-8289.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304312
    description abstractTo better meet the safety requirements and economic benefits of mountainous high-speed railways, long and steep ramps are implemented to overcome elevation obstacles. In this paper, the impacts of speed reduction, operation safety risks, line transportation capacity, maintenance, and operation quality on long and steep ramps are comprehensively considered, and a design method for high-speed railways with long and steep ramps in tough mountainous areas is proposed. This method has also been applied in engineering practice. Considering factors such as the operational organization and quality of electric multiple units (EMUs), it is recommended that there be no restrictions on the ramp sections of EMUs with a design speed of 250  km/h, which makes up 15‰ or less of existing railways in China. The lengths of the ramp sections with slopes of 20‰, 25‰, and 30‰ should not exceed 17, 9, or 6 km, respectively. The ramp section of the EMU running line with a design speed of 350  km/h should be implemented in a way that ensures the relevant explanatory requirements are maintained according to the existing specifications. A practical verification of the comparison and selection of the line schemes of the Junlian to Zhaotong line section of the Chongqing–Kunming high-speed railway shows that the proposed design method can better meet the high-speed railway design needs for long ascending and descending grades in mountainous areas and provide theoretical support for the optimization and selection of line schemes.
    publisherAmerican Society of Civil Engineers
    titleDesign Method and Engineering Practice for Long and Steep High-Speed Railway Ramps in Tough Mountainous Areas
    typeJournal Article
    journal volume151
    journal issue1
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.TEENG-8289
    journal fristpage04024088-1
    journal lastpage04024088-16
    page16
    treeJournal of Transportation Engineering, Part A: Systems:;2025:;Volume ( 151 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian