YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Deep Excavation–Induced Stability Evaluation of a Triple Tunnel Using Discrete and Continuum Numerical Modeling

    Source: International Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 001::page 04024299-1
    Author:
    Abdollah Tabaroei
    ,
    Vahab Sarfarazi
    ,
    Maziar Moaveni
    ,
    Amir Hossein Vakili
    ,
    Tuan A. Pham
    DOI: 10.1061/IJGNAI.GMENG-9963
    Publisher: American Society of Civil Engineers
    Abstract: One of the most crucial tasks in the design, control, and construction of urban deep excavations is ensuring the safety of the existing underground infrastructure. Deformation and settlement created by excavation may damage the adjacent tunnels. In this study, the stability of an existing triple tunnel in relation to the construction of an adjacent deep excavation is evaluated by numerical simulation using both the discrete-element method (DEM) and the finite-element method (FEM). A deep excavation supported by the retaining wall and five levels of strutting system was created adjacent to an existing triple tunnel. The excavation’s width and depth were 30 and 16 m, respectively. In both discrete-element (DE) and finite-element (FE) simulations, the horizontal spacing of the triple tunnel wall relative to the retaining wall (SH) is varied between 3 and 35 m, while vertical spacing of the triple tunnel’s crown from the ground surface (SV) is changed from 4.8 to 32 m. The results indicated that at a certain value of SV and with increasing the SH, the horizontal displacement of the wall decreases. The variations in the triple tunnel position significantly affected the settlement pattern. In addition, the results showed that the maximum vertical displacement occurred at the middle tunnel crown, while the lowest value of the maximum vertical displacement was found at the crown of the right tunnel. At a certain value of the vertical displacement, the wall horizontal displacement is deduced by increasing in the SH value.
    • Download: (4.804Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Deep Excavation–Induced Stability Evaluation of a Triple Tunnel Using Discrete and Continuum Numerical Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304297
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorAbdollah Tabaroei
    contributor authorVahab Sarfarazi
    contributor authorMaziar Moaveni
    contributor authorAmir Hossein Vakili
    contributor authorTuan A. Pham
    date accessioned2025-04-20T10:14:40Z
    date available2025-04-20T10:14:40Z
    date copyright10/16/2024 12:00:00 AM
    date issued2025
    identifier otherIJGNAI.GMENG-9963.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304297
    description abstractOne of the most crucial tasks in the design, control, and construction of urban deep excavations is ensuring the safety of the existing underground infrastructure. Deformation and settlement created by excavation may damage the adjacent tunnels. In this study, the stability of an existing triple tunnel in relation to the construction of an adjacent deep excavation is evaluated by numerical simulation using both the discrete-element method (DEM) and the finite-element method (FEM). A deep excavation supported by the retaining wall and five levels of strutting system was created adjacent to an existing triple tunnel. The excavation’s width and depth were 30 and 16 m, respectively. In both discrete-element (DE) and finite-element (FE) simulations, the horizontal spacing of the triple tunnel wall relative to the retaining wall (SH) is varied between 3 and 35 m, while vertical spacing of the triple tunnel’s crown from the ground surface (SV) is changed from 4.8 to 32 m. The results indicated that at a certain value of SV and with increasing the SH, the horizontal displacement of the wall decreases. The variations in the triple tunnel position significantly affected the settlement pattern. In addition, the results showed that the maximum vertical displacement occurred at the middle tunnel crown, while the lowest value of the maximum vertical displacement was found at the crown of the right tunnel. At a certain value of the vertical displacement, the wall horizontal displacement is deduced by increasing in the SH value.
    publisherAmerican Society of Civil Engineers
    titleDeep Excavation–Induced Stability Evaluation of a Triple Tunnel Using Discrete and Continuum Numerical Modeling
    typeJournal Article
    journal volume25
    journal issue1
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9963
    journal fristpage04024299-1
    journal lastpage04024299-18
    page18
    treeInternational Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian