YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data-Driven Approach for Prediction of Drivers’ Decision in Type-II Dilemma at Signalized Intersection

    Source: Journal of Transportation Engineering, Part A: Systems:;2025:;Volume ( 151 ):;issue: 001::page 04024086-1
    Author:
    Ritvik Chauhan
    ,
    Satish Chandra
    DOI: 10.1061/JTEPBS.TEENG-8455
    Publisher: American Society of Civil Engineers
    Abstract: During the amber phase at signalized intersections, many drivers often face a dilemma when deciding whether to stop or go. This indecisiveness has significant safety issues; hence, predicting a driver’s decision, evaluating policies that supplement the driver’s decision-making process, and mitigating the dilemma zones at signal-controlled intersections are crucial. The present study develops multiple dilemma decision prediction models using statistical and data-driven machine learning (ML) approaches. Also, the models are developed while focusing on the internal validation and external transferability for in-field application to aid real-time performance. Several vehicular, geometric, and signal operational parameters derived from vehicular trajectory data from four study locations are used for the analysis. The modeling approach yields good performance results in predicting a driver’s decision during the amber phase. ML-based models are observed to yield better performance. Further, the statistical method provides statistically significant coefficients and corresponding elasticity values for several parameters used for evaluating and visualizing the effect of varying the parameter value on the location of the dilemma zone. These models are beneficial in assessing the effect of changes in operational policies. Whereas ML-based models yield the advantage of higher prediction accuracy, faster and robust predictions, and inherent quality of better understanding of the complexity in data, these models are more suited for real-time operation, driver assistance, and signal optimizations. The SHapley Additive exPlanations (SHAP) values that support measuring the effect of an individual parameter on prediction performance of the ML model are also studied.
    • Download: (2.493Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data-Driven Approach for Prediction of Drivers’ Decision in Type-II Dilemma at Signalized Intersection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304289
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorRitvik Chauhan
    contributor authorSatish Chandra
    date accessioned2025-04-20T10:14:27Z
    date available2025-04-20T10:14:27Z
    date copyright10/24/2024 12:00:00 AM
    date issued2025
    identifier otherJTEPBS.TEENG-8455.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304289
    description abstractDuring the amber phase at signalized intersections, many drivers often face a dilemma when deciding whether to stop or go. This indecisiveness has significant safety issues; hence, predicting a driver’s decision, evaluating policies that supplement the driver’s decision-making process, and mitigating the dilemma zones at signal-controlled intersections are crucial. The present study develops multiple dilemma decision prediction models using statistical and data-driven machine learning (ML) approaches. Also, the models are developed while focusing on the internal validation and external transferability for in-field application to aid real-time performance. Several vehicular, geometric, and signal operational parameters derived from vehicular trajectory data from four study locations are used for the analysis. The modeling approach yields good performance results in predicting a driver’s decision during the amber phase. ML-based models are observed to yield better performance. Further, the statistical method provides statistically significant coefficients and corresponding elasticity values for several parameters used for evaluating and visualizing the effect of varying the parameter value on the location of the dilemma zone. These models are beneficial in assessing the effect of changes in operational policies. Whereas ML-based models yield the advantage of higher prediction accuracy, faster and robust predictions, and inherent quality of better understanding of the complexity in data, these models are more suited for real-time operation, driver assistance, and signal optimizations. The SHapley Additive exPlanations (SHAP) values that support measuring the effect of an individual parameter on prediction performance of the ML model are also studied.
    publisherAmerican Society of Civil Engineers
    titleData-Driven Approach for Prediction of Drivers’ Decision in Type-II Dilemma at Signalized Intersection
    typeJournal Article
    journal volume151
    journal issue1
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.TEENG-8455
    journal fristpage04024086-1
    journal lastpage04024086-19
    page19
    treeJournal of Transportation Engineering, Part A: Systems:;2025:;Volume ( 151 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian