YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Spherical Penetration Grouting Model for Bingham Fluids Considering Gravity and Time-Varying Slurry Viscosity

    Source: International Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 002::page 04024339-1
    Author:
    Cheng Yang
    ,
    Shize Zhang
    ,
    Deren Liu
    ,
    Xu Wang
    ,
    Jiyuan Zhang
    ,
    Zhibin Xiong
    DOI: 10.1061/IJGNAI.GMENG-10757
    Publisher: American Society of Civil Engineers
    Abstract: As an effective reinforcement technology for seepage prevention, penetration grouting has been widely used in geotechnical and underground engineering. Because grouting is a hidden project, the extent of slurry spread is often estimated theoretically and through experience. Therefore, it is important to understand the diffusion pattern and scope of penetration grouting in reinforcement engineering. Based on the generalized Darcy's law, a penetration grouting model considering the gravity and the time-varying nature of the slurry viscosity is proposed in this study. Its validity and effectiveness are verified through a comparison with existing penetration grouting tests. Based on the established penetration grouting model, the effects of the grouting pressure, permeability coefficient, water–cement ratio, and other factors on penetration grouting are analyzed. The penetration and diffusion process of a Bingham fluid considering gravity and time-variable slurry viscosity is computationally simulated using a finite-element software. The research results show that the proposed penetration grouting model is more accurate than the traditional one that does not consider the two aforementioned factors, and its results are more in line with the experimental ones. The rate of error calculated from the experimental value is about 11%. The diffusion radius of the slurry increases with increasing grouting pressure, permeability coefficient, and water–cement ratio, and decreases with increasing groundwater pressure. With the elapse of the grouting time, the increase rate of the diffusion radius exhibits a trend of increasing first and then decreasing and tending to level off. These research results can provide certain theoretical support for penetration grouting research in geotechnical and underground engineering.
    • Download: (1.576Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Spherical Penetration Grouting Model for Bingham Fluids Considering Gravity and Time-Varying Slurry Viscosity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303948
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorCheng Yang
    contributor authorShize Zhang
    contributor authorDeren Liu
    contributor authorXu Wang
    contributor authorJiyuan Zhang
    contributor authorZhibin Xiong
    date accessioned2025-04-20T10:04:55Z
    date available2025-04-20T10:04:55Z
    date copyright11/27/2024 12:00:00 AM
    date issued2025
    identifier otherIJGNAI.GMENG-10757.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303948
    description abstractAs an effective reinforcement technology for seepage prevention, penetration grouting has been widely used in geotechnical and underground engineering. Because grouting is a hidden project, the extent of slurry spread is often estimated theoretically and through experience. Therefore, it is important to understand the diffusion pattern and scope of penetration grouting in reinforcement engineering. Based on the generalized Darcy's law, a penetration grouting model considering the gravity and the time-varying nature of the slurry viscosity is proposed in this study. Its validity and effectiveness are verified through a comparison with existing penetration grouting tests. Based on the established penetration grouting model, the effects of the grouting pressure, permeability coefficient, water–cement ratio, and other factors on penetration grouting are analyzed. The penetration and diffusion process of a Bingham fluid considering gravity and time-variable slurry viscosity is computationally simulated using a finite-element software. The research results show that the proposed penetration grouting model is more accurate than the traditional one that does not consider the two aforementioned factors, and its results are more in line with the experimental ones. The rate of error calculated from the experimental value is about 11%. The diffusion radius of the slurry increases with increasing grouting pressure, permeability coefficient, and water–cement ratio, and decreases with increasing groundwater pressure. With the elapse of the grouting time, the increase rate of the diffusion radius exhibits a trend of increasing first and then decreasing and tending to level off. These research results can provide certain theoretical support for penetration grouting research in geotechnical and underground engineering.
    publisherAmerican Society of Civil Engineers
    titleSpherical Penetration Grouting Model for Bingham Fluids Considering Gravity and Time-Varying Slurry Viscosity
    typeJournal Article
    journal volume25
    journal issue2
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-10757
    journal fristpage04024339-1
    journal lastpage04024339-12
    page12
    treeInternational Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian