YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Spatial Dependence of Extreme Rainfall and Development of Intensity–Duration–Frequency Curves Using Max-Stable Process Models

    Source: Journal of Hydrologic Engineering:;2025:;Volume ( 030 ):;issue: 001::page 04024053-1
    Author:
    Degavath Vinod
    ,
    Amai Mahesha
    DOI: 10.1061/JHYEFF.HEENG-6326
    Publisher: American Society of Civil Engineers
    Abstract: The effective management of flood risk and urban drainage design hinges on a comprehensive understanding and accurate modeling of extreme rainfall variations, particularly in vulnerable areas. The study proposes to model spatial extreme rainfall across various durations in the Ganga River basin of India using max-stable processes (MSP). Incorporating geographical covariates like longitude, latitude, and elevation, 28 surface response models were constructed for location and scale parameters, with linear variations in marginal parameters while keeping the shape parameter constant across space. Various max-stable characterizations were evaluated using the Takeuchi information criterion (TIC) value and likelihood ratio test statistics, including Brown-Resnick, Smith, Extremal-t, Schlatter, and Geometric-Gaussian models with different correlation functions. The findings showed that the Brown-Resnick model consistently simulated well for shorter extreme rainfall for 3, 4, and 6-h and 36-h durations. The extremal coefficients revealed higher dependency between closer locations for most durations. In comparison with classical univariate extreme value theory (UEVT), the MSP exhibits a minimal overestimation in extreme rainfall intensity at New Delhi (by 13.6  mm/h) and Diamond Harbor (by 10.2  mm/h) stations for shorter durations, i.e., 2-h to 6-h range. Its estimations align within the uncertainty bounds of the identical and independent distribution (I.I.D) for longer durations. This suggests the importance of considering the strengths and limitations of M.S.P. and UEVT approaches for accurate rainfall intensity estimation, especially in flood risk management and urban drainage design. In data-sparse region/ungauged basins, where traditional methods like univariate UEVT may be limited due to the absence of observed rainfall data. The fitted max-stable processes MSP can serve as a valuable tool when relevant geographical covariates are known.
    • Download: (1.212Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Spatial Dependence of Extreme Rainfall and Development of Intensity–Duration–Frequency Curves Using Max-Stable Process Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303940
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorDegavath Vinod
    contributor authorAmai Mahesha
    date accessioned2025-04-20T10:04:37Z
    date available2025-04-20T10:04:37Z
    date copyright10/30/2024 12:00:00 AM
    date issued2025
    identifier otherJHYEFF.HEENG-6326.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303940
    description abstractThe effective management of flood risk and urban drainage design hinges on a comprehensive understanding and accurate modeling of extreme rainfall variations, particularly in vulnerable areas. The study proposes to model spatial extreme rainfall across various durations in the Ganga River basin of India using max-stable processes (MSP). Incorporating geographical covariates like longitude, latitude, and elevation, 28 surface response models were constructed for location and scale parameters, with linear variations in marginal parameters while keeping the shape parameter constant across space. Various max-stable characterizations were evaluated using the Takeuchi information criterion (TIC) value and likelihood ratio test statistics, including Brown-Resnick, Smith, Extremal-t, Schlatter, and Geometric-Gaussian models with different correlation functions. The findings showed that the Brown-Resnick model consistently simulated well for shorter extreme rainfall for 3, 4, and 6-h and 36-h durations. The extremal coefficients revealed higher dependency between closer locations for most durations. In comparison with classical univariate extreme value theory (UEVT), the MSP exhibits a minimal overestimation in extreme rainfall intensity at New Delhi (by 13.6  mm/h) and Diamond Harbor (by 10.2  mm/h) stations for shorter durations, i.e., 2-h to 6-h range. Its estimations align within the uncertainty bounds of the identical and independent distribution (I.I.D) for longer durations. This suggests the importance of considering the strengths and limitations of M.S.P. and UEVT approaches for accurate rainfall intensity estimation, especially in flood risk management and urban drainage design. In data-sparse region/ungauged basins, where traditional methods like univariate UEVT may be limited due to the absence of observed rainfall data. The fitted max-stable processes MSP can serve as a valuable tool when relevant geographical covariates are known.
    publisherAmerican Society of Civil Engineers
    titleSpatial Dependence of Extreme Rainfall and Development of Intensity–Duration–Frequency Curves Using Max-Stable Process Models
    typeJournal Article
    journal volume30
    journal issue1
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/JHYEFF.HEENG-6326
    journal fristpage04024053-1
    journal lastpage04024053-16
    page16
    treeJournal of Hydrologic Engineering:;2025:;Volume ( 030 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian