YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Small-Strain Stiffness Model of Shear-Zone Soil in a Reactivated Slow-Moving Landslide

    Source: International Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 002::page 04024356-1
    Author:
    Jincheng Wang
    ,
    Deshan Cui
    ,
    Xinli Hu
    ,
    Qiong Chen
    ,
    Juxiang Chen
    ,
    Jinge Wang
    DOI: 10.1061/IJGNAI.GMENG-10387
    Publisher: American Society of Civil Engineers
    Abstract: Many slow-moving landslides with pre-existing shear zones exist in the Three Gorges Reservoir (TGR) region. In response to dynamics such as water-level fluctuations, shear-zone soil undergoes repeated small deformations, which sometimes result in slow-moving landslides that accelerate rapidly and fail catastrophically. Therefore, investigating the nonlinear variation of the shear modulus of soil over different strain ranges, especially for small strains, which is not well studied, is important. This paper conducts a series of investigations on shear-zone soil to obtain parameters of the small-strain stiffness [hardening soil (HS)-Small] model, including consolidated drain triaxial unloading–reloading compression, bending elements, and resonant column tests. The parameters were used to analyze the strain and deformation of a reactivated slow-moving landslide in the TGR region through numerical analysis. Correspondingly, in situ deformation monitors carried out in the shear zone are reported. The results illustrate that most regions of the slow-moving landslide are in small-strain states, and the numerical results demonstrate that the HS-Small model shows better consistency for monitoring data than traditional models. Estimation methods for each parameter of the HS-Small model are recommended based on statistical analysis and additional small-strain stiffness tests. A small-strain stiffness prediction empirical formula of shear-zone soil is proposed. The findings demonstrate the potential of the HS-Small model for slow-moving landslides, and the recommended estimation method can be considered for parameter determination.
    • Download: (3.301Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Small-Strain Stiffness Model of Shear-Zone Soil in a Reactivated Slow-Moving Landslide

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303926
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorJincheng Wang
    contributor authorDeshan Cui
    contributor authorXinli Hu
    contributor authorQiong Chen
    contributor authorJuxiang Chen
    contributor authorJinge Wang
    date accessioned2025-04-20T10:04:08Z
    date available2025-04-20T10:04:08Z
    date copyright12/12/2024 12:00:00 AM
    date issued2025
    identifier otherIJGNAI.GMENG-10387.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303926
    description abstractMany slow-moving landslides with pre-existing shear zones exist in the Three Gorges Reservoir (TGR) region. In response to dynamics such as water-level fluctuations, shear-zone soil undergoes repeated small deformations, which sometimes result in slow-moving landslides that accelerate rapidly and fail catastrophically. Therefore, investigating the nonlinear variation of the shear modulus of soil over different strain ranges, especially for small strains, which is not well studied, is important. This paper conducts a series of investigations on shear-zone soil to obtain parameters of the small-strain stiffness [hardening soil (HS)-Small] model, including consolidated drain triaxial unloading–reloading compression, bending elements, and resonant column tests. The parameters were used to analyze the strain and deformation of a reactivated slow-moving landslide in the TGR region through numerical analysis. Correspondingly, in situ deformation monitors carried out in the shear zone are reported. The results illustrate that most regions of the slow-moving landslide are in small-strain states, and the numerical results demonstrate that the HS-Small model shows better consistency for monitoring data than traditional models. Estimation methods for each parameter of the HS-Small model are recommended based on statistical analysis and additional small-strain stiffness tests. A small-strain stiffness prediction empirical formula of shear-zone soil is proposed. The findings demonstrate the potential of the HS-Small model for slow-moving landslides, and the recommended estimation method can be considered for parameter determination.
    publisherAmerican Society of Civil Engineers
    titleSmall-Strain Stiffness Model of Shear-Zone Soil in a Reactivated Slow-Moving Landslide
    typeJournal Article
    journal volume25
    journal issue2
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-10387
    journal fristpage04024356-1
    journal lastpage04024356-18
    page18
    treeInternational Journal of Geomechanics:;2025:;Volume ( 025 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian