YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Shear Performance of RC Beams Strengthened with Steel Strand Wire Mesh–Reinforced Engineered Cementitious Composites under Cyclic Loading

    Source: Journal of Composites for Construction:;2024:;Volume ( 028 ):;issue: 006::page 04024058-1
    Author:
    Dapeng Zhao
    ,
    Ke Li
    ,
    Juntao Zhu
    ,
    Jiajun Fan
    ,
    Fuh-Gwo Yuan
    DOI: 10.1061/JCCOF2.CCENG-4773
    Publisher: American Society of Civil Engineers
    Abstract: A steel strand wire mesh (SSWM)–reinforced engineered cementitious composite (ECC), referred to as SSWM-ECC, is a promising composite material for structural strengthening owing to the combination of the high strength of SSWM and the high ductility of ECC. This paper presents an application of SSWM-ECC for shear strengthening of reinforced concrete (RC) beams subjected to cyclic loading. First, cyclic loading tests were conducted on two control beams and five strengthened beams, considering various shear span-to-effective depth ratios, reinforcement ratios of the SSWM, and strengthening schemes. The test results showed that brittle failure and degradation of the shear properties of the strengthened beams were effectively mitigated. Compared to the control beams, the ultimate load, cracking load, service load, ductility, and energy absorption of the strengthened beams increased by 18%–40%, 145%–208%, 35%–126%, 20%–65%, and 58%–96%, respectively. The improvement in shear performance increased with increasing reinforcement ratio of the SSWM and shear span-to-effective depth ratio. In addition, the fully wrapped strengthening method effectively confined the concrete, resulting in a more significant increase in the shear performance of the beams compared to the U-wrapped and both-sided methods. Furthermore, a modified truss arch model was developed to predict the shear strength of the strengthened beams. The results predicted by the proposed model exhibited greater accuracy than those generated by various existing models, including those commonly utilized in the field. The experimental study presented in this paper demonstrates a significant improvement in the shear performance of RC beams subjected to cyclic loading using a novel composite called SSWM-ECC. This method is expected to be useful for structural strengthening. The fully wrapped, U-wrapped, and both-sided SSWM-ECC strengthening methods introduced in this paper are applicable to a wide range of engineering projects. In particular, an economical and convenient method for strengthening RC beams using externally bonded prefabricated SSWM-ECC plates is presented. The SSWM-ECC can effectively mitigate the shear brittleness of RC beams subjected to cyclic loading and significantly increase their shear strength, stiffness, cracking resistance, energy absorption, and ductility. Furthermore, the strengthening efficiency increased with increasing shear span-to-effective depth ratio and reinforcement ratio of the SSWM. Finally, a calculation method for predicting the shear strength of strengthened beams is proposed, which provides a basis for the design and application of shear strengthening of RC beams with SSWM-ECC under cyclic loading.
    • Download: (3.401Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Shear Performance of RC Beams Strengthened with Steel Strand Wire Mesh–Reinforced Engineered Cementitious Composites under Cyclic Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303900
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorDapeng Zhao
    contributor authorKe Li
    contributor authorJuntao Zhu
    contributor authorJiajun Fan
    contributor authorFuh-Gwo Yuan
    date accessioned2025-04-20T10:03:03Z
    date available2025-04-20T10:03:03Z
    date copyright9/18/2024 12:00:00 AM
    date issued2024
    identifier otherJCCOF2.CCENG-4773.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303900
    description abstractA steel strand wire mesh (SSWM)–reinforced engineered cementitious composite (ECC), referred to as SSWM-ECC, is a promising composite material for structural strengthening owing to the combination of the high strength of SSWM and the high ductility of ECC. This paper presents an application of SSWM-ECC for shear strengthening of reinforced concrete (RC) beams subjected to cyclic loading. First, cyclic loading tests were conducted on two control beams and five strengthened beams, considering various shear span-to-effective depth ratios, reinforcement ratios of the SSWM, and strengthening schemes. The test results showed that brittle failure and degradation of the shear properties of the strengthened beams were effectively mitigated. Compared to the control beams, the ultimate load, cracking load, service load, ductility, and energy absorption of the strengthened beams increased by 18%–40%, 145%–208%, 35%–126%, 20%–65%, and 58%–96%, respectively. The improvement in shear performance increased with increasing reinforcement ratio of the SSWM and shear span-to-effective depth ratio. In addition, the fully wrapped strengthening method effectively confined the concrete, resulting in a more significant increase in the shear performance of the beams compared to the U-wrapped and both-sided methods. Furthermore, a modified truss arch model was developed to predict the shear strength of the strengthened beams. The results predicted by the proposed model exhibited greater accuracy than those generated by various existing models, including those commonly utilized in the field. The experimental study presented in this paper demonstrates a significant improvement in the shear performance of RC beams subjected to cyclic loading using a novel composite called SSWM-ECC. This method is expected to be useful for structural strengthening. The fully wrapped, U-wrapped, and both-sided SSWM-ECC strengthening methods introduced in this paper are applicable to a wide range of engineering projects. In particular, an economical and convenient method for strengthening RC beams using externally bonded prefabricated SSWM-ECC plates is presented. The SSWM-ECC can effectively mitigate the shear brittleness of RC beams subjected to cyclic loading and significantly increase their shear strength, stiffness, cracking resistance, energy absorption, and ductility. Furthermore, the strengthening efficiency increased with increasing shear span-to-effective depth ratio and reinforcement ratio of the SSWM. Finally, a calculation method for predicting the shear strength of strengthened beams is proposed, which provides a basis for the design and application of shear strengthening of RC beams with SSWM-ECC under cyclic loading.
    publisherAmerican Society of Civil Engineers
    titleShear Performance of RC Beams Strengthened with Steel Strand Wire Mesh–Reinforced Engineered Cementitious Composites under Cyclic Loading
    typeJournal Article
    journal volume28
    journal issue6
    journal titleJournal of Composites for Construction
    identifier doi10.1061/JCCOF2.CCENG-4773
    journal fristpage04024058-1
    journal lastpage04024058-17
    page17
    treeJournal of Composites for Construction:;2024:;Volume ( 028 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian