YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Behavior of Concrete Columns Reinforced with BFRP, GFRP, Steel, and Hybrid Steel–FRP Reinforcement

    Source: Journal of Composites for Construction:;2024:;Volume ( 028 ):;issue: 006::page 04024068-1
    Author:
    Jinliang Liu
    ,
    Shansong Gao
    ,
    Hongguang Wang
    ,
    Jinbo Du
    DOI: 10.1061/JCCOF2.CCENG-4543
    Publisher: American Society of Civil Engineers
    Abstract: Steel-reinforced concrete (RC) columns typically exhibit significant residual displacements and low postyield stiffness when subjected to seismic loads, which may complicate subsequent repairs. This paper investigated the effects of different reinforcement methods on the seismic performance of concrete columns by using glass fiber–reinforced polymer (GFRP) and basalt fiber–reinforced polymer (BFRP) bars. Five samples were subjected to low-cycle horizontal loading tests to compare the corresponding seismic performance indices. The results showed that fully FRP-reinforced concrete columns had a lower energy dissipation capacity and ductility coefficient than RC columns but had other clear advantages in terms of ultimate displacement and a postyield stiffness increase by 100%. Compared to RC columns, the concrete columns with half FRP bars exhibited comparable energy dissipation, greater ultimate displacements and ductility coefficients, and a 60% increase in postyield stiffness. Incorporating FRP bars significantly reduced the residual deformation of FRP-reinforced concrete columns compared to RC columns under the same loading cycle, enabling structural repairs and continued use after an earthquake. During the 2008 Wenchuan earthquake, many traditional reinforced concrete structures were severely damaged, causing significant economic losses and threatening lives and property. Related investigations verified that the deformation of reinforced concrete columns was the most serious under the same displacement level, and adding fiber-reinforced polymer materials greatly reduced the deformation of the concrete columns, which can improve the reparability of the structure after an earthquake. Additionally, the peak load-carrying capacity of fiber-reinforced polymer materials is similar to that of reinforced concrete columns, giving the former a certain application value. In the coastal areas of traditional reinforced concrete structures, because of corrosion, which leads to a significant reduction in the service life of the environment, it is proposed that the introduction of fiber-reinforced polymer materials with excellent corrosion resistance will largely improve the service life of the corrosive environment of the components while ensuring similar seismic performance.
    • Download: (2.553Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Behavior of Concrete Columns Reinforced with BFRP, GFRP, Steel, and Hybrid Steel–FRP Reinforcement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303872
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorJinliang Liu
    contributor authorShansong Gao
    contributor authorHongguang Wang
    contributor authorJinbo Du
    date accessioned2025-04-20T10:01:59Z
    date available2025-04-20T10:01:59Z
    date copyright9/24/2024 12:00:00 AM
    date issued2024
    identifier otherJCCOF2.CCENG-4543.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303872
    description abstractSteel-reinforced concrete (RC) columns typically exhibit significant residual displacements and low postyield stiffness when subjected to seismic loads, which may complicate subsequent repairs. This paper investigated the effects of different reinforcement methods on the seismic performance of concrete columns by using glass fiber–reinforced polymer (GFRP) and basalt fiber–reinforced polymer (BFRP) bars. Five samples were subjected to low-cycle horizontal loading tests to compare the corresponding seismic performance indices. The results showed that fully FRP-reinforced concrete columns had a lower energy dissipation capacity and ductility coefficient than RC columns but had other clear advantages in terms of ultimate displacement and a postyield stiffness increase by 100%. Compared to RC columns, the concrete columns with half FRP bars exhibited comparable energy dissipation, greater ultimate displacements and ductility coefficients, and a 60% increase in postyield stiffness. Incorporating FRP bars significantly reduced the residual deformation of FRP-reinforced concrete columns compared to RC columns under the same loading cycle, enabling structural repairs and continued use after an earthquake. During the 2008 Wenchuan earthquake, many traditional reinforced concrete structures were severely damaged, causing significant economic losses and threatening lives and property. Related investigations verified that the deformation of reinforced concrete columns was the most serious under the same displacement level, and adding fiber-reinforced polymer materials greatly reduced the deformation of the concrete columns, which can improve the reparability of the structure after an earthquake. Additionally, the peak load-carrying capacity of fiber-reinforced polymer materials is similar to that of reinforced concrete columns, giving the former a certain application value. In the coastal areas of traditional reinforced concrete structures, because of corrosion, which leads to a significant reduction in the service life of the environment, it is proposed that the introduction of fiber-reinforced polymer materials with excellent corrosion resistance will largely improve the service life of the corrosive environment of the components while ensuring similar seismic performance.
    publisherAmerican Society of Civil Engineers
    titleSeismic Behavior of Concrete Columns Reinforced with BFRP, GFRP, Steel, and Hybrid Steel–FRP Reinforcement
    typeJournal Article
    journal volume28
    journal issue6
    journal titleJournal of Composites for Construction
    identifier doi10.1061/JCCOF2.CCENG-4543
    journal fristpage04024068-1
    journal lastpage04024068-16
    page16
    treeJournal of Composites for Construction:;2024:;Volume ( 028 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian