YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predicting Buildability Using the Surface Texture of 3D Printed Concrete Elements

    Source: Journal of Architectural Engineering:;2025:;Volume ( 031 ):;issue: 002::page 04025010-1
    Author:
    Shanmugaraj Senthilnathan
    ,
    Benny Raphael
    DOI: 10.1061/JAEIED.AEENG-1936
    Publisher: American Society of Civil Engineers
    Abstract: The buildability of three-dimensional (3D) printable concrete is commonly measured by the number of layers that can be printed before a collapse or excessive deformations. Buildability depends on rheological properties and their dynamic changes over time due to hydration and evaporation. These variations influence strength development and lead to dimensional changes in individual layers, potentially resulting in failures such as plastic or buckling collapse. Despite the importance of dimensional changes, no studies have monitored these variations in real time to predict buildability failure. In this study, dimensional changes are indirectly assessed by tracking surface texture changes using two-dimensional (2D) cameras and computer vision techniques. Entropy standard deviation (ESD) is introduced as a metric to quantify temporal textural changes and assess buildability collapse. Results indicate that significant variations in surface texture values of individual layers are observed in collapsed elements, allowing for failure prediction before the collapse. The limiting ESD value for a concrete mix can be identified by carrying out a set of experimental prints. This value could be used for the early prediction of buildability collapse. Experimental data show that buildability collapse can be predicted with 100% accuracy by monitoring the maximum ESD values of all the printed layers. Based on this concept, a methodology has been developed for real-time, nonintrusive buildability assessment of 3D printed elements, offering the potential for feedback control systems to enhance quality, reduce material wastage, and improve the sustainability of concrete 3D printing technology.
    • Download: (2.604Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predicting Buildability Using the Surface Texture of 3D Printed Concrete Elements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303735
    Collections
    • Journal of Architectural Engineering

    Show full item record

    contributor authorShanmugaraj Senthilnathan
    contributor authorBenny Raphael
    date accessioned2025-04-20T09:57:41Z
    date available2025-04-20T09:57:41Z
    date copyright2/4/2025 12:00:00 AM
    date issued2025
    identifier otherJAEIED.AEENG-1936.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303735
    description abstractThe buildability of three-dimensional (3D) printable concrete is commonly measured by the number of layers that can be printed before a collapse or excessive deformations. Buildability depends on rheological properties and their dynamic changes over time due to hydration and evaporation. These variations influence strength development and lead to dimensional changes in individual layers, potentially resulting in failures such as plastic or buckling collapse. Despite the importance of dimensional changes, no studies have monitored these variations in real time to predict buildability failure. In this study, dimensional changes are indirectly assessed by tracking surface texture changes using two-dimensional (2D) cameras and computer vision techniques. Entropy standard deviation (ESD) is introduced as a metric to quantify temporal textural changes and assess buildability collapse. Results indicate that significant variations in surface texture values of individual layers are observed in collapsed elements, allowing for failure prediction before the collapse. The limiting ESD value for a concrete mix can be identified by carrying out a set of experimental prints. This value could be used for the early prediction of buildability collapse. Experimental data show that buildability collapse can be predicted with 100% accuracy by monitoring the maximum ESD values of all the printed layers. Based on this concept, a methodology has been developed for real-time, nonintrusive buildability assessment of 3D printed elements, offering the potential for feedback control systems to enhance quality, reduce material wastage, and improve the sustainability of concrete 3D printing technology.
    publisherAmerican Society of Civil Engineers
    titlePredicting Buildability Using the Surface Texture of 3D Printed Concrete Elements
    typeJournal Article
    journal volume31
    journal issue2
    journal titleJournal of Architectural Engineering
    identifier doi10.1061/JAEIED.AEENG-1936
    journal fristpage04025010-1
    journal lastpage04025010-18
    page18
    treeJournal of Architectural Engineering:;2025:;Volume ( 031 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian