Show simple item record

contributor authorElhelaly, Amro
contributor authorHassan, Marwan
contributor authorWeaver, David
contributor authorRiznic, Jovica
contributor authorMoussa, Soha
date accessioned2024-12-24T19:17:42Z
date available2024-12-24T19:17:42Z
date copyright7/17/2024 12:00:00 AM
date issued2024
identifier issn0094-9930
identifier otherpvt_146_05_051401.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303677
description abstractOne of the major considerations in the design and operation of heat exchangers is the flow-induced vibration (FIV). While there are multiple FIV excitation mechanisms, fluidelastic instability (FEI) is by far the most crucial mechanism as it can significantly compromise the structural integrity of the tube arrays. Traditionally, it was assumed that FEI could only happen in the transverse direction. However, recent tube failures in replacement steam generators have demonstrated that FEI can occur in the streamwise direction and be equally devastating. This new phenomenon has sparked intensive research to uncover its nature. An intensive experimental research program was launched to investigate the geometrical impact of various tube array types on the FEI in both the transverse and streamwise directions. To that end, the stability of a single flexible tube and multiple flexible tubes in tube arrays was tested. The study will focus on the stability behavior of parallel triangular arrays at pitch ratios in the range of 1.25–1.70. A comparison between the available experimental data and the current results was presented. The current results reveal that the stability threshold is sensitive to the pitch-to-diameter ratio of the array and the number of flexible tubes, especially in the streamwise direction.
publisherThe American Society of Mechanical Engineers (ASME)
titleInvestigation of Fluidelastic Instability in Parallel Triangular Tube Arrays Subjected to Air Flow
typeJournal Paper
journal volume146
journal issue5
journal titleJournal of Pressure Vessel Technology
identifier doi10.1115/1.4065792
journal fristpage51401-1
journal lastpage51401-10
page10
treeJournal of Pressure Vessel Technology:;2024:;volume( 146 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record