Show simple item record

contributor authorRadhakrishnan, Gowtham
contributor authorLeira, Bernt J.
contributor authorGao, Zhen
contributor authorSævik, Svein
contributor authorHan, Xu
date accessioned2024-12-24T19:16:09Z
date available2024-12-24T19:16:09Z
date copyright12/11/2023 12:00:00 AM
date issued2023
identifier issn0892-7219
identifier otheromae_146_3_031702.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303621
description abstractFrom a mathematical viewpoint, the frequency domain analysis of vessel motion responses due to wave actions is based on integration of system dynamics idealized in terms of response amplitude operators for six degrees-of-freedom (DOFs) rigid body motions and an input wave spectrum in order to obtain the response spectrum. Various quantities of interest can be deduced from the response spectrum, which are then used for deriving response-based operational limits for marine operations, also including extreme value and fatigue analysis. The variation of such quantities, owing to the uncertainties associated with the vessel system parameters, can be quantified by performing uncertainty propagation and consequent sensitivity analysis. This study emphasizes and proposes a computational-efficient way of assessing the sensitivity of the system model output with respect to the uncertainties residing in the input parameters by operating on a surrogate model representation. In this respect, the global sensitivity analysis was effectively carried out by deploying an efficient nonintrusive polynomial chaos expansion surrogate model built using a point collocation strategy. Successively, Sobol’ indices were obtained from the analytical decomposition of the polynomial coefficients. The indices, eventually, are employed to quantitatively measure the effects of input uncertainties on the output 6DOF vessel root-mean-square responses.
publisherThe American Society of Mechanical Engineers (ASME)
titleAnalyzing the Sensitivity of Wave Frequency Responses of Floating Vessels to Uncertain System Variables Utilizing Polynomial Chaos Expansion
typeJournal Paper
journal volume146
journal issue3
journal titleJournal of Offshore Mechanics and Arctic Engineering
identifier doi10.1115/1.4063619
journal fristpage31702-1
journal lastpage31702-15
page15
treeJournal of Offshore Mechanics and Arctic Engineering:;2023:;volume( 146 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record