Show simple item record

contributor authorTang, Zhiguo
contributor authorXiang, Yi
contributor authorLi, Man
contributor authorCheng, Jianping
date accessioned2024-12-24T19:04:21Z
date available2024-12-24T19:04:21Z
date copyright11/30/2023 12:00:00 AM
date issued2023
identifier issn2381-6872
identifier otherjeecs_21_4_041002.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303236
description abstractAn effective battery thermal management system (BTMS) is necessary to quickly release the heat generated by power batteries under a high discharge rate and ensure the safe operation of electric vehicles. Inspired by the biomimetic structure in nature, a novel liquid cooling BTMS with a cooling plate based on biomimetic fractal structure was proposed. By developing the physical model of the BTMS, numerical calculations were conducted to analyze the impacts of the structural parameters of the cooling plate and the inlet velocity of the coolant on the thermal performance of the batteries. The results showed that the cooling plate can meet the heat dissipation requirements of high-temperature uniformity for the batteries under high discharge rates, especially under the extremely uniform channel distribution mode for the adjacent fractal branch at the same level. Moreover, the increase in the group number of fractal branches can improve the cooling capacity of the cooling plate and reduce the pressure drop of the coolant. The increase in the level number of channels, the length ratio, and the inlet velocity of the coolant can enhance the cooling capacity. However, these methods of enhancing heat transfer require more pump power consumption. When the group number of fractal branches is 4, the level number of channels is 3, the length ratio is 1, and the inlet velocity of the coolant is 0.5 m/s, the BTMS can control the maximum temperature and maximum temperature difference of the batteries under 4C-rate discharge within 31.68 °C and 4.15 °C, respectively. Finally, orthogonal test was conducted on four factors: the group number of fractal branches, the level number of channels, the length ratio, and the inlet velocity of the coolant. The results showed that the level number of branches is the most important structural parameter.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Novel Liquid Cooling Battery Thermal Management System With a Cooling Plate Based on Biomimetic Fractal Channels
typeJournal Paper
journal volume21
journal issue4
journal titleJournal of Electrochemical Energy Conversion and Storage
identifier doi10.1115/1.4064095
journal fristpage41002-1
journal lastpage41002-12
page12
treeJournal of Electrochemical Energy Conversion and Storage:;2023:;volume( 021 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record