Show simple item record

contributor authorGorai, Somenath
contributor authorSamanta, Devranjan
contributor authorDas, Sarit K.
date accessioned2024-12-24T18:59:05Z
date available2024-12-24T18:59:05Z
date copyright6/17/2024 12:00:00 AM
date issued2024
identifier issn2832-8450
identifier otherht_146_10_102601.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303092
description abstractThe study of flow behavior in the simultaneously developing transitional regime of mixed convection flows is rare. It has been believed that the transitional regime will give a good compromise between pressure drop and heat transfer compared to laminar and turbulent flow regime. In this experimental study, the friction factor (f) and Nusselt number (Nu) characteristics for buoyancy-assisted and opposed flows of water in concurrently developing transitional regime of mixed convection through a vertical tube are studied. Experiments were done for Reynolds numbers (Re) varying from 500 to 15,000, Grashof numbers (Gr) from 1.25 × 104 to 5 × 106, Prandtl numbers (Pr) from 3 to 7, and Richardson numbers (Ri) from 0 to 0.1 subjected to uniform heat flux boundary conditions. A flow visualization provision after the test section which confirms an early transition in buoyancy-opposing flow (Rec = 2264) compared to buoyancy-aiding flow (Rec = 2468) at a fixed Ri of 0.1. Further, with the increase in Ri from 0 to 0.1, the average f decreases, and the average Nu increases in both aiding and opposing flows. It confirms that the onset of transition gets delayed with the increase of heat flux supplied in both the flows. Based on the present outcomes, an efficient heat exchanging device can be operated either to delay or advance the transition in a vertical pipe flow for optimum heat transfer.
publisherThe American Society of Mechanical Engineers (ASME)
titleExperimental Investigations of Heat Transfer in Simultaneously Developing Transitional Regime of Mixed Convection Flows in a Vertical Tube
typeJournal Paper
journal volume146
journal issue10
journal titleASME Journal of Heat and Mass Transfer
identifier doi10.1115/1.4065609
journal fristpage102601-1
journal lastpage102601-12
page12
treeASME Journal of Heat and Mass Transfer:;2024:;volume( 146 ):;issue: 010
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record