Improvement in Forecasting Short-Term Tropical Cyclone Intensity Change and Their Rapid Intensification Using Deep LearningSource: Artificial Intelligence for the Earth Systems:;2024:;volume( 003 ):;issue: 002DOI: 10.1175/AIES-D-23-0052.1Publisher: American Meteorological Society
|
Collections
Show full item record
| contributor author | Kim, Jeong-Hwan | |
| contributor author | Ham, Yoo-Geun | |
| contributor author | Kim, Daehyun | |
| contributor author | Li, Tim | |
| contributor author | Ma, Chen | |
| date accessioned | 2024-12-24T15:20:13Z | |
| date available | 2024-12-24T15:20:13Z | |
| date copyright | 01 Apr. 2024 | |
| date issued | 2024 | |
| identifier other | aies-AIES-D-23-0052.1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4302192 | |
| language | English | |
| publisher | American Meteorological Society | |
| title | Improvement in Forecasting Short-Term Tropical Cyclone Intensity Change and Their Rapid Intensification Using Deep Learning | |
| type | Journal Paper | |
| journal volume | 3 | |
| journal issue | 2 | |
| journal title | Artificial Intelligence for the Earth Systems | |
| identifier doi | 10.1175/AIES-D-23-0052.1 | |
| journal lastpage | e230052 | |
| tree | Artificial Intelligence for the Earth Systems:;2024:;volume( 003 ):;issue: 002 | |
| contenttype | Fulltext |