YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Statistical Treatment of Convolutional Neural Network Superresolution of Inland Surface Wind for Subgrid-Scale Variability Quantification

    Source: Artificial Intelligence for the Earth Systems:;2024:;volume( 003 ):;issue: 001
    Author:
    Getter, Daniel
    ,
    Bessac, Julie
    ,
    Rudi, Johann
    ,
    Feng, Yan
    DOI: 10.1175/AIES-D-23-0009.1
    Publisher: American Meteorological Society
    • Download: (8.862Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Statistical Treatment of Convolutional Neural Network Superresolution of Inland Surface Wind for Subgrid-Scale Variability Quantification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302126
    Collections
    • Artificial Intelligence for the Earth Systems

    Show full item record

    contributor authorGetter, Daniel
    contributor authorBessac, Julie
    contributor authorRudi, Johann
    contributor authorFeng, Yan
    date accessioned2024-12-24T15:17:49Z
    date available2024-12-24T15:17:49Z
    date copyright01 Jan. 2024
    date issued2024
    identifier otheraies-AIES-D-23-0009.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302126
    languageEnglish
    publisherAmerican Meteorological Society
    titleStatistical Treatment of Convolutional Neural Network Superresolution of Inland Surface Wind for Subgrid-Scale Variability Quantification
    typeJournal Paper
    journal volume3
    journal issue1
    journal titleArtificial Intelligence for the Earth Systems
    identifier doi10.1175/AIES-D-23-0009.1
    journal lastpagee230009
    treeArtificial Intelligence for the Earth Systems:;2024:;volume( 003 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian