Improving Precipitation Nowcasting for High-Intensity Events Using Deep Generative Models with Balanced Loss and Temperature Data: A Case Study in the NetherlandsSource: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 004Author:Cambier van Nooten, Charlotte
,
Schreurs, Koert
,
Wijnands, Jasper S.
,
Leijnse, Hidde
,
Schmeits, Maurice
,
Whan, Kirien
,
Shapovalova, Yuliya
DOI: 10.1175/AIES-D-23-0017.1Publisher: American Meteorological Society
|
Collections
Show full item record
contributor author | Cambier van Nooten, Charlotte | |
contributor author | Schreurs, Koert | |
contributor author | Wijnands, Jasper S. | |
contributor author | Leijnse, Hidde | |
contributor author | Schmeits, Maurice | |
contributor author | Whan, Kirien | |
contributor author | Shapovalova, Yuliya | |
date accessioned | 2024-12-24T15:08:18Z | |
date available | 2024-12-24T15:08:18Z | |
date copyright | 01 Oct. 2023 | |
date issued | 2023 | |
identifier other | aies-AIES-D-23-0017.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4301871 | |
language | English | |
publisher | American Meteorological Society | |
title | Improving Precipitation Nowcasting for High-Intensity Events Using Deep Generative Models with Balanced Loss and Temperature Data: A Case Study in the Netherlands | |
type | Journal Paper | |
journal volume | 2 | |
journal issue | 4 | |
journal title | Artificial Intelligence for the Earth Systems | |
identifier doi | 10.1175/AIES-D-23-0017.1 | |
journal lastpage | e230017 | |
tree | Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 004 | |
contenttype | Fulltext |