YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improving Precipitation Nowcasting for High-Intensity Events Using Deep Generative Models with Balanced Loss and Temperature Data: A Case Study in the Netherlands

    Source: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 004
    Author:
    Cambier van Nooten, Charlotte
    ,
    Schreurs, Koert
    ,
    Wijnands, Jasper S.
    ,
    Leijnse, Hidde
    ,
    Schmeits, Maurice
    ,
    Whan, Kirien
    ,
    Shapovalova, Yuliya
    DOI: 10.1175/AIES-D-23-0017.1
    Publisher: American Meteorological Society
    • Download: (18.73Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improving Precipitation Nowcasting for High-Intensity Events Using Deep Generative Models with Balanced Loss and Temperature Data: A Case Study in the Netherlands

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4301871
    Collections
    • Artificial Intelligence for the Earth Systems

    Show full item record

    contributor authorCambier van Nooten, Charlotte
    contributor authorSchreurs, Koert
    contributor authorWijnands, Jasper S.
    contributor authorLeijnse, Hidde
    contributor authorSchmeits, Maurice
    contributor authorWhan, Kirien
    contributor authorShapovalova, Yuliya
    date accessioned2024-12-24T15:08:18Z
    date available2024-12-24T15:08:18Z
    date copyright01 Oct. 2023
    date issued2023
    identifier otheraies-AIES-D-23-0017.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4301871
    languageEnglish
    publisherAmerican Meteorological Society
    titleImproving Precipitation Nowcasting for High-Intensity Events Using Deep Generative Models with Balanced Loss and Temperature Data: A Case Study in the Netherlands
    typeJournal Paper
    journal volume2
    journal issue4
    journal titleArtificial Intelligence for the Earth Systems
    identifier doi10.1175/AIES-D-23-0017.1
    journal lastpagee230017
    treeArtificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian