Improving Subseasonal Soil Moisture and Evaporative Stress Index Forecasts through Machine Learning: The Role of Initial Land State versus Dynamical Model OutputSource: Journal of Hydrometeorology:;2024:;volume( 025 ):;issue: 008::page 1147Author:Lorenz, David J.
,
Otkin, Jason A.
,
Zaitchik, Benjamin F.
,
Hain, Christopher
,
Holmes, Thomas R. H.
,
Anderson, Martha C.
DOI: 10.1175/JHM-D-23-0074.1Publisher: American Meteorological Society
|
Collections
Show full item record
contributor author | Lorenz, David J. | |
contributor author | Otkin, Jason A. | |
contributor author | Zaitchik, Benjamin F. | |
contributor author | Hain, Christopher | |
contributor author | Holmes, Thomas R. H. | |
contributor author | Anderson, Martha C. | |
date accessioned | 2024-12-24T15:05:11Z | |
date available | 2024-12-24T15:05:11Z | |
date copyright | 01 Aug. 2024 | |
date issued | 2024 | |
identifier other | hydr-JHM-D-23-0074.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4301798 | |
language | English | |
publisher | American Meteorological Society | |
title | Improving Subseasonal Soil Moisture and Evaporative Stress Index Forecasts through Machine Learning: The Role of Initial Land State versus Dynamical Model Output | |
type | Journal Paper | |
journal volume | 25 | |
journal issue | 8 | |
journal title | Journal of Hydrometeorology | |
identifier doi | 10.1175/JHM-D-23-0074.1 | |
journal fristpage | 1147 | |
journal lastpage | 1163 | |
tree | Journal of Hydrometeorology:;2024:;volume( 025 ):;issue: 008 | |
contenttype | Fulltext |