YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Using Neural Networks to Learn the Jet Stream Forced Response from Natural Variability

    Source: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 002
    Author:
    Connolly, Charlotte
    ,
    Barnes, Elizabeth A.
    ,
    Hassanzadeh, Pedram
    ,
    Pritchard, Mike
    DOI: 10.1175/AIES-D-22-0094.1
    Publisher: American Meteorological Society
    • Download: (1.989Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Using Neural Networks to Learn the Jet Stream Forced Response from Natural Variability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4301715
    Collections
    • Artificial Intelligence for the Earth Systems

    Show full item record

    contributor authorConnolly, Charlotte
    contributor authorBarnes, Elizabeth A.
    contributor authorHassanzadeh, Pedram
    contributor authorPritchard, Mike
    date accessioned2024-12-24T15:02:07Z
    date available2024-12-24T15:02:07Z
    date copyright01 Apr. 2023
    date issued2023
    identifier otheraies-AIES-D-22-0094.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4301715
    languageEnglish
    publisherAmerican Meteorological Society
    titleUsing Neural Networks to Learn the Jet Stream Forced Response from Natural Variability
    typeJournal Paper
    journal volume2
    journal issue2
    journal titleArtificial Intelligence for the Earth Systems
    identifier doi10.1175/AIES-D-22-0094.1
    journal lastpagee220094
    treeArtificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian