YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    O3ResNet: A Deep Learning–Based Forecast System to Predict Local Ground-Level Daily Maximum 8-Hour Average Ozone in Rural and Suburban Environments

    Source: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 003
    Author:
    Leufen, Lukas Hubert
    ,
    Kleinert, Felix
    ,
    Schultz, Martin G.
    DOI: 10.1175/AIES-D-22-0085.1
    Publisher: American Meteorological Society
    • Download: (6.159Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      O3ResNet: A Deep Learning–Based Forecast System to Predict Local Ground-Level Daily Maximum 8-Hour Average Ozone in Rural and Suburban Environments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4301682
    Collections
    • Artificial Intelligence for the Earth Systems

    Show full item record

    contributor authorLeufen, Lukas Hubert
    contributor authorKleinert, Felix
    contributor authorSchultz, Martin G.
    date accessioned2024-12-24T15:00:52Z
    date available2024-12-24T15:00:52Z
    date copyright01 Jul. 2023
    date issued2023
    identifier otheraies-AIES-D-22-0085.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4301682
    languageEnglish
    publisherAmerican Meteorological Society
    titleO3ResNet: A Deep Learning–Based Forecast System to Predict Local Ground-Level Daily Maximum 8-Hour Average Ozone in Rural and Suburban Environments
    typeJournal Paper
    journal volume2
    journal issue3
    journal titleArtificial Intelligence for the Earth Systems
    identifier doi10.1175/AIES-D-22-0085.1
    journal lastpagee220085
    treeArtificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian