Improving Seasonal Prediction of Summer Precipitation in the Middle–Lower Reaches of the Yangtze River Using a TU-Net Deep Learning ApproachSource: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 002DOI: 10.1175/AIES-D-22-0078.1Publisher: American Meteorological Society
|
Collections
Show full item record
contributor author | Yang, Shuxian | |
contributor author | Ling, Fenghua | |
contributor author | Li, Yue | |
contributor author | Luo, Jing-Jia | |
date accessioned | 2024-12-24T15:00:00Z | |
date available | 2024-12-24T15:00:00Z | |
date copyright | 01 Apr. 2023 | |
date issued | 2023 | |
identifier other | aies-AIES-D-22-0078.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4301660 | |
language | English | |
publisher | American Meteorological Society | |
title | Improving Seasonal Prediction of Summer Precipitation in the Middle–Lower Reaches of the Yangtze River Using a TU-Net Deep Learning Approach | |
type | Journal Paper | |
journal volume | 2 | |
journal issue | 2 | |
journal title | Artificial Intelligence for the Earth Systems | |
identifier doi | 10.1175/AIES-D-22-0078.1 | |
journal lastpage | 220078 | |
tree | Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 002 | |
contenttype | Fulltext |