YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improving Seasonal Prediction of Summer Precipitation in the Middle–Lower Reaches of the Yangtze River Using a TU-Net Deep Learning Approach

    Source: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 002
    Author:
    Yang, Shuxian
    ,
    Ling, Fenghua
    ,
    Li, Yue
    ,
    Luo, Jing-Jia
    DOI: 10.1175/AIES-D-22-0078.1
    Publisher: American Meteorological Society
    • Download: (4.596Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improving Seasonal Prediction of Summer Precipitation in the Middle–Lower Reaches of the Yangtze River Using a TU-Net Deep Learning Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4301660
    Collections
    • Artificial Intelligence for the Earth Systems

    Show full item record

    contributor authorYang, Shuxian
    contributor authorLing, Fenghua
    contributor authorLi, Yue
    contributor authorLuo, Jing-Jia
    date accessioned2024-12-24T15:00:00Z
    date available2024-12-24T15:00:00Z
    date copyright01 Apr. 2023
    date issued2023
    identifier otheraies-AIES-D-22-0078.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4301660
    languageEnglish
    publisherAmerican Meteorological Society
    titleImproving Seasonal Prediction of Summer Precipitation in the Middle–Lower Reaches of the Yangtze River Using a TU-Net Deep Learning Approach
    typeJournal Paper
    journal volume2
    journal issue2
    journal titleArtificial Intelligence for the Earth Systems
    identifier doi10.1175/AIES-D-22-0078.1
    journal lastpage220078
    treeArtificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian