YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Uncertainty Calibration of Passive Microwave Brightness Temperatures Predicted by Bayesian Deep Learning Models

    Source: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 004
    Author:
    Ortiz, Pedro
    ,
    Casas, Eleanor
    ,
    Orescanin, Marko
    ,
    Powell, Scott W.
    ,
    Petkovic, Veljko
    ,
    Hall, Micky
    DOI: 10.1175/AIES-D-22-0056.1
    Publisher: American Meteorological Society
    • Download: (19.27Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Uncertainty Calibration of Passive Microwave Brightness Temperatures Predicted by Bayesian Deep Learning Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4301555
    Collections
    • Artificial Intelligence for the Earth Systems

    Show full item record

    contributor authorOrtiz, Pedro
    contributor authorCasas, Eleanor
    contributor authorOrescanin, Marko
    contributor authorPowell, Scott W.
    contributor authorPetkovic, Veljko
    contributor authorHall, Micky
    date accessioned2024-12-24T14:56:03Z
    date available2024-12-24T14:56:03Z
    date copyright01 Oct. 2023
    date issued2023
    identifier otheraies-AIES-D-22-0056.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4301555
    languageEnglish
    publisherAmerican Meteorological Society
    titleUncertainty Calibration of Passive Microwave Brightness Temperatures Predicted by Bayesian Deep Learning Models
    typeJournal Paper
    journal volume2
    journal issue4
    journal titleArtificial Intelligence for the Earth Systems
    identifier doi10.1175/AIES-D-22-0056.1
    journal lastpagee220056
    treeArtificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian