A Deep Learning Data Fusion Model Using Sentinel-1/2, SoilGrids, SMAP, and GLDAS for Soil Moisture RetrievalSource: Journal of Hydrometeorology:;2023:;volume( 024 ):;issue: 010::page 1789DOI: 10.1175/JHM-D-22-0118.1Publisher: American Meteorological Society
|
Collections
Show full item record
| contributor author | Batchu, Vishal | |
| contributor author | Nearing, Grey | |
| contributor author | Gulshan, Varun | |
| date accessioned | 2024-12-24T14:33:43Z | |
| date available | 2024-12-24T14:33:43Z | |
| date copyright | 01 Oct. 2023 | |
| date issued | 2023 | |
| identifier other | hydr-JHM-D-22-0118.1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4300978 | |
| language | English | |
| publisher | American Meteorological Society | |
| title | A Deep Learning Data Fusion Model Using Sentinel-1/2, SoilGrids, SMAP, and GLDAS for Soil Moisture Retrieval | |
| type | Journal Paper | |
| journal volume | 24 | |
| journal issue | 10 | |
| journal title | Journal of Hydrometeorology | |
| identifier doi | 10.1175/JHM-D-22-0118.1 | |
| journal fristpage | 1789 | |
| journal lastpage | 1823 | |
| tree | Journal of Hydrometeorology:;2023:;volume( 024 ):;issue: 010 | |
| contenttype | Fulltext |